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Introduction

Moving forward is about making decisions. As individuals or as a group, we are
frequently confronted with situations that demand evaluating and organizing the options
at hand, and ultimately making a choice, or ranking or classifying these alternatives. The
inherent complexity of these decisions often lies in the need to consider diverse viewpoints
on the alternatives. For instance, the evaluation of development projects or public poli-
cies (e.g., climate policies [Doukas and Nikas, 2020], sustainable energy planning [Kumar
et al., 2017, Pohl and Geldermann, 2024], energy supply resilience management [Siskos
and Burgherr, 2022]) requires taking into account impacts of different kinds (e.g., en-
vironmental, economic, social) and/or the opinions of various experts and stakeholders.
Similarly, on an individual level, a typical example is the choice of a travel route, which
requires balancing multiple factors like cost, duration, carbon emissions, and comfort.
Therefore, decision support systems, as well as systems capable of making automated de-
cisions, play a crucial role in today’s world – a key example being recommender systems.
Yet, the effectiveness of these tools in meeting the needs of decision-makers depends on
their ability to guide or act in accordance with their preferences, thus ensuring that the
decisions made align with their values.

In this regard, a vast body of literature within the field of decision theory, which
ranges from economics [Von Neumann and Morgenstern, 1944] and mathematical psy-
chology [Tversky and Kahneman, 1981] to artificial intelligence [Bacchus and Grove, 1995,
Boutilier et al., 1999], has introduced models capable of capturing decision-makers’ prefer-
ences, often through parameters adjustable to their value systems. Among the different
types of models, this thesis focuses value functions that assign to alternatives overall
scores reflecting their attractiveness to the decision-maker. Examples of value function
models include, the weighted sum, the ordered weighted average (OWA) [Yager, 1988],
the weighted OWA [Torra, 1997], the Choquet integral [Grabisch, 1996], the Sugeno inte-
gral [Sugeno, 1974], the weighted Chebyshev norm [Wierzbicki, 1986], the expected utility
[von Neumann and Morgenstern, 1947], the Choquet expected utility [Schmeidler, 1989],
the multilinear utility [Keeney and Raiffa, 1976] and GAI-decomposable utility functions
[Fishburn, 1970].
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These models, while satisfying normative properties that ensure decision consis-
tency, often exhibit strong descriptive capabilities, and can therefore account for complex
decision-making behaviors. In particular, some models stand out for their ability to
model interactions between viewpoints on the alternatives. For instance, models based
on the Choquet integral, the multilinear utility, or the Sugeno integral, use a weighting
system, called capacity, that assigns importance weights to each viewpoint, but also to
all possible groups of viewpoints. Another relevant example is GAI-decomposable utility
functions, which take the form of an additive decomposition in multivariate terms, capa-
ble of encoding interactions across all possible groups of viewpoints. However, due to the
combinatorial nature of the possible interactions, the descriptive and normative power of
these model is made possible by using a large number of parameters and constraints, that
often grows exponentially with the number of viewpoints considered. As a result, meth-
ods for calibrating these parameters to the value system of a decision-maker (also known
as preference elicitation) usually rely on prior restrictions of the model flexibility (e.g., by
predefining the possible interacting groups of viewpoints) [Braziunas and Boutilier, 2005,
Grabisch et al., 2008, Pelegrina et al., 2020a, Beliakov and Wu, 2021, Grabisch et al.,
2022]. Thus, fully leveraging the descriptive richness of these models for problems of
significant size (involving more than a dozen viewpoints, i.e., more than several thousand
possible interactions) remains a challenge.

On the other hand, methods for adjusting model parameters based on examples have
been developed in the field of machine learning, notably through regularized empirical
risk minimization [Vapnik, 1995], which aims to identify the model that minimizes both
the error on the examples and a regularization term to control the complexity of the
learned model. When the model involves a large number of parameters (understood
here as more than ten thousand), it is often desirable to control the model complexity
by seeking a sparse model, where only a limited number of parameters are non-zero.
This not only simplifies the model, making it easier to interpret, but also significantly
reduces computational and memory costs during both storage and prediction phases. A
standard approach to achieve this consists in employing sparsity-inducing regularization
functions. These regularization functions—of which the ℓ1-norm of the parameter vector
constitutes a canonical example [Tibshirani, 1996]—are characterized by points of non-
differentiability occurring where the parameters are zero, a property that encourages
sparse solutions during the optimization process.

From an optimization perspective, this non-differentiability introduces an additional
layer of difficulty to the already challenging task of optimizing over high-dimensional pa-
rameter spaces (note however that these regularization functions are often convex thereby
enabling the use of convex optimization techniques). As a result, extensive research at the
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intersection of machine learning and optimization has addressed the challenge of solving
such problems [Beck and Teboulle, 2009, Friedman et al., 2010, Xiao, 2010, Bach et al.,
2012, Beck, 2015, Hastie et al., 2015a, Bottou et al., 2018]. Since the primary objective of
the learning process is to achieve good generalizing performances on unseen data rather
than to compute high-precision solutions to the learning problem, the proposed methods
are typically iterative optimization algorithms with low per-iteration computational cost
(and slow convergence) allowing approximate solutions to the learning problem to be
obtained in reasonable times, even for models involving millions of parameters [Bennett
and Parrado-Hernández, 2006, Bottou and Bousquet, 2007, Bottou et al., 2018].

While the learning of preference representations from preference examples is a well-
established field in machine learning known as preference learning [Fürnkranz and Hüller-
meier, 2010b, Wirth et al., 2017, Hüllermeier and Słowiński, 2024b], the potential con-
tribution of using sparsity-inducing regularization functions and associated large-scale
optimization methods to address the challenges posed by the learning of utility func-
tions with interactions from decision theory has been little studied so far. Indeed, as
in the decision-theoretic litterature, existing approaches in preference learning for learn-
ing utility functions such as Choquet integrals, multilinear utilities, or GAI alleviate the
computational difficulty by resorting in practice to prior reductions of the parameter
space [Tehrani et al., 2012b, Bigot et al., 2012, Tehrani et al., 2014a, Bresson et al., 2021,
Atienza et al., 2024] or relaxations of the constraints on the parameters [Kakula et al.,
2020a, Tehrani, 2021]. On the other hand, several attempts to control the complexity
of the models using sparsity-inducing regularizations have been made [Anderson et al.,
2014, Adeyeba et al., 2015, Pinar et al., 2017, de Oliveira et al., 2022]. However, the
computational challenge is not truly addressed in these contributions, as the methods are
tested on small-scale problems (fewer than 5 viewpoints).

Goal of the thesis. Thus, in this thesis, we aim to develop scalable learning algo-
rithms for utility functions with interactions from decision theory, which do not rely on
prior reductions of the models flexibility, but instead focus on sparse learning of their
parameters, allowing the most important interactions to emerge from preference data,
ultimately resulting in simple and interpretable models. We also aim to provide these
algorithms for various learning scenarios: passive (using a preference database), active
(using selected examples, potentially in interaction with the decision-maker), and online
(from a stream of examples). In doing so, we also aim to provide the preference learning
community with models interpretable and associated with desirable mathematical prop-
erties. The presented work typically includes 1) the formulation of a learning problem
suited to the utility model and the learning scenario considered, and 2) the development
of an optimization method to address the learning problem.
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Organization of the manuscript This thesis consists of six chapters, the first of which
provides the fundamental concepts of preference modeling and preference learning. The
following chapters present the contributions (and the additional background required):

Chapter 2 focuses on the Choquet integral (CI) of marginal utility functions de-
fined for each viewpoint. We show that we can successively learn marginal utilities from
properly chosen preference examples, and sparse representations of the capacity param-
eterizing the CI from raw databases of preference examples. This chapter is based on
several publications: [Herin et al., 2022a] for decision-making under uncertainty and
[Herin et al., 2022b, 2024c] for multi-criteria/attribute decision-making and the bipolar
CI extension.

Chapter 3 considers a large class of preference models that allow viewpoint inter-
actions by mean of a capacity, including CI and the multilinear utility, and introduces
a general approach for learning a sparse representation of this capacity. The proposed
learning algorithm specifically addresses the computational challenges arising from the
combinatorial nature of interactions and is applied to problems involving more than 20
viewpoints. This chapter is based on the following publications: [Herin et al., 2022c,
2023b].

Chapter 4 focuses on the GAI-decomposable utility function model and introduces
a learning approach able to identify the factors of interacting viewpoints (as few as
possible) and to learn the utility functions defined on these factors. This chapter builds
upon and extends the following publication: [Herin et al., 2024b].

Chapter 5 introduces an algorithm for solving a choice problem among a set of
alternatives described by multiple criteria by actively learning the parameters of the
decision-maker’s utility function. This chapter is based on the following publication:
[Herin et al., 2024a].

Chapter 6 introduces an online algorithm for learning a sparse representation of
the capacity used in the Choquet integral or multilinear utility, designed for decision
contexts where preference examples become available sequentially, or involving a large
number of preference examples or a large number of criteria. Moreover, we propose a
variant making it possible to include normative constraints on the capacity. This chapter
is based on the following publication: [Herin et al., 2024d].

Note that the list of publications resulting from the work presented in this thesis is
provided in Appendix D.
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Summary

This chapter first introduces preference models within a general framework in which
a decision-maker (DM) considers alternatives described by n viewpoints.Then, the pref-
erence models of interest here, i.e., utility functions accounting for interactions between
viewpoints, are presented and compared according to their properties. A distinction is
made between 1) totally decomposable functions, which rely on aggregation functions such
as the Choquet integral or the multilinear utility to combine marginal utility functions de-
fined on each viewpoint, and 2) GAI-decomposable functions, which additively decompose
into sub-utility functions attached to groups of interacting viewpoints. Then, we present
the standard approaches for preference elicitation (methods for calibrating the model’s
parameters to the DM’s value system), before addressing the question from a machine
learning perspective. To this end, we provide an introduction to supervised learning us-
ing the framework of regularized empirical risk minimization as a general approach to
learning models that accurately explain the data while remaining as simple as possible.
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Introduction

Preference modeling [Bouyssou and Vincke, 2009] refers to the construction of math-
ematical or computational models that capture the attitude of individuals or groups in
decision-making processes such as choices or rankings of alternatives. More precisely,
these preference models reflect the way human beings or entities compare alternatives to
determine which one they prefer. These models come in two main forms (formally defined
in Section 1.2): either as utility functions that assign numerical scores to alternatives re-
flecting their attractiveness to the decision-maker, or as preference relations that allow
comparing pairs of alternatives. In any case, they enable systematic representation and
analysis of preferences, facilitating comparison and evaluation of alternatives, thereby
allowing for decision support or automated decision-making. Pioneering works in prefer-
ence modeling come from various application domains, such as economics where rational
customers are traditionally supposed to make choices according to their expected utility
[Von Neumann and Morgenstern, 1944] or mathematical psychology [Tversky and Kahne-
man, 1981] that study the psychological intricacies involved in decision-making cognitive
processes. Finally, preference modeling is paired with preference elicitation, the objective
of which is to align the preference models’ parameters with the decision-maker’s value
system by interacting with her using specifically designed and dynamic questionnaires.

More recently, preference modeling has become ubiquitous in artificial intelligence
[Braziunas and Boutilier, 2008, Chevaleyre et al., 2008, Brafman and Domshlak, 2009,
Chevaleyre et al., 2010, Domshlak et al., 2011b, Pigozzi et al., 2016, Song et al., 2024],
where preference representations are essential for creating autonomous agents capable of
making satisfying decisions. These autonomous agents are generally intended to provide
personalized services, and often take the form of recommendation systems or virtual as-
sistants. In such contexts, preference representations are typically derived from data such
as clicks or likes on social media, or qualitative feedback on proposed recommendations
or provided assistance. The task of automatically deriving preference models from data,
through machine learning techniques, is referred to as preference learning [Hüllermeier
and Fürnkranz, 2013]. It involves conceiving algorithms capable of learning from labeled
datasets containing preference information such as ratings or rankings of alternatives. By
leveraging statistical learning methods and optimization tools, preference learning aims
to uncover preference representations, supporting personalized recommendation systems,
decision support tools, and automated decision-making processes.

This chapter is organized as follows: In Section 1, we introduce preference models
stemming from decision theory, focusing on the models discussed in this thesis. Then, in
Section 2, we present standard approaches for preference elicitation. Finally, in Section 3,
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we present supervised learning and particularly regularized empirical risk minimization
as a tool for learning preference models from preference information.

1 Preference Models

In this section, decision problems and preference models are first formally defined,
followed by the presentation of two major families of utility functions allowing for interac-
tions between viewpoints: totally decomposable and GAI-decomposable utility functions.

1.1 Decision Problem

Despite the wide variety of decision-making situations, a common structure stands
out and allows us to formally define a decision problem as the combination of the fol-
lowing three components [Perny, 2000]: a set of alternatives, a set of n viewpoints (or
evaluation dimensions) w.r.t. which the alternatives are evaluated, and a problem state-
ment that may involve choosing an alternative, ranking the alternatives, or assigning the
alternatives to categories. The semantics associated with the n viewpoints on alterna-
tives can vary depending on the context and may influence how the decision problem
is addressed. For this reason, decision theory includes several sub-fields associated with
different viewpoints’ semantics, the main examples of which are outlined below:

Multiattribute decision-making Multiattribute decision-making refers to the general
framework where viewpoints are attributes describing the alternatives. For instance, if the
alternatives are bikes, the attributes could be the brand, the weight, the frame material
(steel, aluminum or titanium) and the presence of a basket. In this context, multiattribute
utility theory (MAUT) [Keeney and Raiffa, 1976, Dyer, 2005] has established conditions
on preferences so that they can be modeled by simple multivariate utility functions.

Multicriteria decision-making In multicriteria decision-making [Roy et al., 1985, Roy
and Vincke, 1981, Grabisch, 2016b], the n viewpoints (referred to as criteria) are defined
by n real-valued functions ci, i = 1, . . . , n giving the performances (the higher the better)
of the alternatives w.r.t. n perspectives. For instance, a bike can be characterized by its
performances w.r.t. lightness, aesthetics, robustness, and cost.

Decision-making under uncertainty In the standard setting of Savage for decision-
making under uncertainty [Savage, 1954], alternatives (referred to as acts) are described
by their outcomes (usually payoffs) in the n states of nature that consist in an list of
states that cover all possible circumstances that might arise and which may have a differ-
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ent impact on the act’s outcomes. For instance, alternatives could be national economic
policies resulting in different growth rates depending on the future state of the overall
economy. In decision-making under risk, the probabilities of the states, and therefore the
act consequences are represented by probabilistic lotteries [Von Neumann and Morgen-
stern, 1944].

Multi-agent decision-making Finally, in multi-agent decision-making, alternatives
are evaluated or ranked by n agents. For instance, it could be candidates for a scientific
prize evaluated by n jury members. In this context, social choice theory [Arrow, 1951]
studies how collective decisions can be made by aggregating these evaluations or rankings.

Whatever the context, the difficulty behind a decision problem lies in the simul-
taneous consideration of n distinct viewpoints. For instance, in multi-criteria decision-
making, several criteria typically in conflict must be balanced. In decision-making under
uncertainty, one has to weigh up various risks, and in collective decision-making diver-
gent opinions have to be taken into account. Decision theory has therefore proposed and
studied models to describe how humans or entities solve such problems. These models,
called preference models, enable to reveal preferred alternatives, thereby facilitating the
formulation of choices and rankings consistent with the DM’s value system. While being
adjustable to each value system to account for subjectivity, they verify mathematical
properties that ensure rationality of decisions. Before formally introducing preference
models in the next section, we give useful notations for the sequel.

Notations Let N = {1, . . . , n} denote the set of n viewpoints representing attributes,
criteria, states of nature, or agents. Any alternative is represented by a vector (x1, . . . , xn)
of consequences where xi is its consequence w.r.t. to the ith viewpoint. Let Xi denote
the set of possible consequences on the ith viewpoint for all i ∈ N and X = X1× . . .×Xn

the set of all possible consequence vectors. Without loss of generality, non-numerical
consequences are assumed to be priorly numerically encoded, and therefore, Xi ⊆ R, i =
1, . . . , n. Also, for any subset of viewpoints S ⊆ N , and for any x ∈ X , xS refers to the
restriction of the consequence vector x to the consequences w.r.t. viewpoints in S, i.e.,
xS ∈ XS = ∏

i∈S Xi. In addition, (xS, x′
−S) refers to the compound consequence vector

whose consequences w.r.t. viewpoints in S are those of the vector x and the others are
those of the vector x′. When S is a singleton (i.e., S = {i}), the notation (xi, x′

−i) is
used.
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1.2 Preference Relation and Preference Model

The concept of preference can be formalized mathematically using binary relations,
defined by:

Definition 1.1 (binary relation). A binary relation R on a set X is a subset of the
Cartesian product X × X . For any x, x′ ∈ X , the assertion (x, x′) ∈ R is denoted by
xRx′.

Various properties are used to describe binary relations. For instance, a binary
relation R on X is:

- reflexive, if for any x ∈ X , xRx

- transitive, if for any x, x′, x′′ ∈ X ,x′′Rx′ and x′Rx =⇒ x′′Rx

- complete, if for any x, x′ ∈ X , x′Rx or xRx′.

Also, the asymmetric part and symmetric part of a binary relation R on X , denoted
by A and S, can be defined as follows:

- for any x, x′ ∈ X , xAx′ ⇐⇒ xRx′ and not x′Rx

- for any x, x′ ∈ X , xSx′ ⇐⇒ xRx′ and x′Rx.

A preference relation, denoted by ≿, can then be defined as a binary relation re-
flecting a DM’s preferences, i.e., x ≿ x′ if and only if the DM considers that “ x at least
as good as x′”. Since for x′ = x it is always the case, a preference relation is reflexive.
Conversely, any reflexive binary relation could be regarded as the preference relation of
a fictitious DM. This yields the following formal definition [Bouyssou and Vincke, 2009]:

Definition 1.2 (preference relation). A preference relation ≿ on X is a reflexive bi-
nary relation on X . For any x, x′ ∈ X , the assertion x ≿ x′ reads “x is at least as good
as x′” or “x is preferred to x′”.

The asymmetric part of ≿ is denoted by ≻ and x ≻ x′ reads “x is strictly preferred
to x′”, while its symmetric part is denoted by ∼ and x ∼ x′ reads “x is indifferent to x′”.
Then, a preference model can be formally defined as follows:

Definition 1.3 (preference model). A preference model is a function Ψ : X×X → R.
Any preference model Ψ induces a preference relation on X , denoted by ≿Ψ, such that for
any x, x′ ∈ X :

Ψ(x, x′) ≥ 0⇐⇒ x ≿Ψ x′
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where ≿Ψ reads “x is preferred to x′ according to model Ψ”.

A fundamental class of preference models are those based on a utility function
U : X → R that assigns a overall evaluation to any alternative. Such preference models
thus indicate that x is preferred to x′ whenever U(x) ≥ U(x′), i.e., Ψ(x, x′) = U(x)−U(x′).
In this case, solving a choice decision problem boils down to maximizing U over X . In
addition, it is important to note that the induced preference relation ≿Ψ admits a specific
structure as it is a weak order, i.e., it is complete and transitive.

Remark 1.1 (weak orders and utility functions). Conversely, if a preference relation ≿ is
a weak order and X is countable (i.e., finite or denumbrable) then there exists a utility
function U representing ≿, i.e., such that for any x, x′ ∈ X , x ≿ x′ ⇐⇒ U(x) ≥ U(x′)
[Fishburn et al., 1979, Bouyssou and Vincke, 2009]. Note that when X is uncountable,
additional requirements on X are needed to show that there exists U representing ≿

[Debreu et al., 1954].

Example 1.1. Let us consider four friends choosing a restaurant. Each restaurant is
described by the four friends’ respective desire to dine there, which they expressed by a
score on a scale from 0 to 5. In this setting, a basic utility function is the average of
the individual scores. The table below gives an example of individual scores and average
overall value for two restaurants x and x′.

friend 1 friend 2 friend 3 friend 4 U(x)

Restaurant x 2.5 1 5 2.5 2.75
Restaurant x′ 0 5 1 2 2

Since U(x) ≥ U(x′), restaurant x is preferred to restaurant x′.

Preference models based on a utility function fall into the general aggregate and
compare (AC) approach that consists of first assigning values to alternatives through
a utility function U and then, for any pair x, x′, comparing U(x) and U(x′) using any
comparison function g : R × R → R (i.e., Ψ(x, x′) = g(U(x), U(x′))) [Perny, 2000].
Exchanging the two steps of the AC approach yields a second general class of preference
models, the compare and aggregate (CA) approach, where pairs of alternatives are first
compared according to each viewpoint, and then the n comparisons are aggregated. More
formally, in this case, Ψ(x, x′) = h(g1(x1, x

′
1), . . . , gn(xn, x′

n)), where gi : Xi × Xi → R,
i = 1, . . . , n are n comparison functions and h : Rn → R is a function aggregating the n
preference indices gi(xi, x′

i). An example of such a preference model is given below:
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Example 1.2. Let us consider again the four friends of Example 1.1. Suppose now that
they did not give scores to the two restaurants x and x′ but voted for one of them. Then
a basic CA model consists in declaring the preferred restaurant as the one for which a
majority of friends voted. This is achieved by taking gi(xi, x′

i) = 1 if friend i prefers
restaurant x to restaurant and x′, gi(xi, x′

i) = 0 otherwise, and using h(t1, . . . , tn) =∑n
i=1 ti− n

2 (n = 4). Below we give the individual preference indices gi(xi, x′
i) for the four

friends compatible with their ratings given in Example 1.1, along with the model output:

friend 1 friend 2 friend 3 friend 4 Ψ(x, x′)

Restaurant pair (x, x′) 1 1 0 1 1

This model also highlights x as the preferred alternative since Ψ(x, x′) = 1.

In the case of a CA model, preference relation ≿Ψ is usually not transitive and not
complete. Furthermore, as shown in Example 1.2, these models not necessarily require
the acquisition of quantitative information such as the individual scores used in Example
1.1, and may rely on ordinal information solely. As such, they are considered to require
less elicitation effort than preference models based on utility functions, but also to be less
rich in the sense that they convey less information.

In the remainder of this thesis, we focus on preference models based on utility
functions. Furthermore, to facilitate the interpretation of such representations or their
subsequent manipulation (e.g., optimization of the utility function for recommendation
purposes), we consider simple decompositions of the utility function. The additive de-
composition of the average score used in Example 1.1 serves as a first basic example.
However, as it will be illustrated in the following, such a decomposition is limited in its
ability to capture complex preferences, and in particular to take into account interac-
tions between viewpoints. The following subsection presents a broad class of models that
overcome these limitations, called totally decomposable utility functions.

1.3 Totally Decomposable Utility Functions

Totally decomposable utility functions (also known as decomposable models [Gra-
bisch et al., 2016, Krantz and Tversky, 1971]) are utility functions that can be decomposed
into two types of elements: a set of n marginal utility functions defined for each viewpoint
on the one hand, and on the other, an aggregation function that aggregates them into a
overall utility value. An aggregation function can be defined as follows [Grabisch, 2009]:
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Definition 1.4 (aggregation function). A function F : [a, b]n → R is an aggregation
function if it is non-decreasing in each argument, i.e., for any z, t ∈ [a, b]n such that
zi ≥ ti, i = 1, . . . , n then F (z) ≥ F (t).

Then, totally decomposable utility functions are defined as follows:

Definition 1.5 (totally decomposable utility function). A totally decomposable util-
ity function U : X → R is a function of the form:

U(x) = F (u1(x1), . . . , un(xn)), for any x ∈ X , (1.1)

where ui : Rn → [a, b], i = 1, . . . , n and F : [a, b]n → R is an aggregation function.

Functions ui : Xi → R, i = 1, . . . , n are univariate utility functions describing the
attractiveness of consequences xi ∈ Xi, i = 1, . . . , n for the DM, and are thus referred to
as marginal utility functions. Then, F aggregates these marginal utilities into a global
score reflecting the overall attractiveness of the alternatives. By non-decreasingness of
F in each argument, this aggregation is such that for any pair of alternatives x, x′ ∈ X ,
whenever ui(xi) ≥ ui(x′

i), i = 1, . . . n (x is at least as good as x′ alternative w.r.t. every
point of view), we have U(x) ≥ U(x′) (x is globally preferred to x′). In other words, if
≿i, i = 1, . . . , n denotes n weak orders defined by x ≿i x

′ ⇐⇒ ui(xi) ≥ ui(x′
i), preference

model Ψ = U(x)− U(x′) is monotonic w.r.t. these orders, i.e.:

Definition 1.6 (monotonic preference model). For any orders ≿i, i = 1, . . . , n, a
preference model Ψ is monotonic w.r.t. to these orders if for any x, x′ ∈ X , xi ≿i x

′
i for

any i ∈ N =⇒ x ≿Ψ x′. Whenever xi ≿i x
′
i for any i ∈ N holds, x′ is said to be weakly

Pareto-dominated by x.

1.3.1 Examples of Aggregation Functions

Beyond a common structure, decomposable utility functions can exhibit diverse be-
havior depending on the aggregation function considered. In particular, each aggregation
function is associated with particular mathematical properties and a certain degree of
flexibility. Thus, in what follows, we explore major examples of families of aggregation
functions, which are models parameterized by a vector w, allowing the encoding of sub-
jective information used in the aggregation, such as the importance given by the DM to
the different points of view or to groups of points of view. Note that to avoid overly
cumbersome notations, zi is used to designate ui(xi), the marginal utility with respect to
viewpoint i.
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Weighted sum Denoted by WSw, the weighted sum simply adds up the marginal util-
ities weighted by weight vector w as follows:

Definition 1.7 (weighted sum). For any z ∈ [a, b]n, WSw(z) = ∑n
i=1 wizi, with w ∈

∆n = {w ∈ [0, 1]n|∑n
i=1 wi = 1}.

Although WS can adjust the importance given to each viewpoint through parameter
w and thus model diverse preference behaviors, its linearity limits its ability to account
for complex preferences. In particular, the weighted sum is not able to model preferences
that involve interactions (or synergies) between viewpoints, as illustrated in the following:

Example 1.3. The mayor of a large city plans to build a new train station. Four projects
A,B,C,D have been proposed, each evaluated according to three viewpoints: (1) connec-
tivity to the metro network, (2) proximity to the city center, (3) economic viability. The
evaluations (marginal utilities) w.r.t. each viewpoint expressed on a 0-10 scale are given
in Table 1.1 for the four projects.

connectivity center proximity economic viability

A 10 0 10
B 10 10 5
C 3 0 10
D 3 10 5

Table 1.1: Evaluations of the four train station projects (Example 1.3).

Given these evaluations, it is highly likely that the mayor will express the following
two preferences: A ≻ B and D ≿ C. Indeed, if the metro station is very well connected,
whatever the distance to the city center, a cheap project is better than an expensive one.
On the contrary, if the station is not very well connected, the mayor is highly likely to
authorize higher spending to bring the station closer to the center so that people can
still easily access the train station. However, there exists no weights w ∈ ∆3 such that
WSw(10, 0, 10) > WSw(10, 10, 5) and WSw(3, 10, 5) ≥WSw(3, 0, 10) since it is equivalent
to w3 > 2w2 and 2w2 ≥ w3.

Intuitively, there is a kind of redundancy between viewpoints 1 and 2, and thus, when
both performances reach their maximum on these viewpoints, the weighted sum ends up
rewarding their common quality twice. In contrast, by considering the non-linear model
F (x) = 4

5x1 + 1
3x2 + 1

5x3 − 1
3 min x1, x2, this excess utility is corrected through the term

−1
3 min{x1, x2}. We then obtain F (A) = 10 > 9 = F (B) and F (D) = 86

15 ≥
69
15 = F (C).

In fact, F is an instance of the Choquet integral, introduced in the following section.
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Remark 1.2 (preferential independence). it can easily be checked that a preference model
Ψ based on an additively decomposed utility function verifies mutual preferential in-
dependence (MPI), i.e., (xS, y−S) ≿Ψ (x′

S, y−S) =⇒ (xS, t−S) ≿Ψ (x′
S, t−S), for any

x, x′, y, t ∈ X and S ⊆ N . In words, such a condition means that the preference be-
tween two alternatives does not depend on the viewpoints for which they have the same
consequences. Thus, another way to understand that WS can not represent preferences
A ≻ B and D ≿ C in Example 1.3, is to see that they constitute a violation of MPI for
S = {2, 3}. Conversely, if ≿ is a weak order satisfying MPI and some additional technical
assumptions it is representable by an additive utility [Bouyssou and Pirlot, 2016].

Remark 1.3 (weak separability). On the other hand, it can easily be checked that, by non-
decreasingness of aggregation function Fw, a preference model Ψ based on a totally de-
composable utility functions satisfies a weaker independence condition than MPI, referred
to as weak separability and defined by: (xi, y−i) ≻Ψ (x′

i, y−i) =⇒ (xi, t−i) ≿Ψ (x′
i, t−i), for

any x, x′, y, t ∈ X and i ∈ N . Conversely, if ≿ is a weak order and satisfies weak sep-
arability, it is representable by a totally decomposable utility function [Bouyssou et al.,
2013] (Chapter 16). Note that when X is uncountable, additional requirements on X are
needed to prove the latter implication.

Example 1.3 illustrates the fact that natural human preferences may involve inter-
actions between viewpoints, which cannot be captured by a linear aggregation function.
However, it also suggests that this limitation can be addressed by extending the linear ag-
gregation function with non-linear interaction terms. In the following, we present major
examples of general aggregation functions accounting for interactions between viewpoints.

Choquet integral The Choquet integral [Choquet, 1954] is a flexible aggregation func-
tion initially used in decision-making under uncertainty [Schmeidler, 1989] and more
recently used in multicriteria decision-making to model preferences in the presence of
interacting criteria [Grabisch, 1996, Grabisch et al., 2009]. Viewpoint interactions are
modeled with a weighting system w : 2N → R that attaches a weight w(S) to any possi-
ble set of viewpoints S ⊆ N , reflecting their relative importance. This weighting system
is a capacity.

Definition 1.8 (capacity). A set function w : 2N → R is a capacity if it is monotonic
w.r.t. set inclusion i.e., ∀A ⊆ B,w(A) ≤ w(B) and it is normalized i.e., w(∅) = 0 and
w(N) = 1.

Depending on the literature, a capacity can also be called a non-additive measure or
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a fuzzy measure [Sugeno, 1974]. The Choquet integral, denoted by Cw, employs capacity
w to aggregate marginal utilities as follows:

Definition 1.9 (Choquet integral). For any z ∈ [a, b]n,

Cw(z) =
n∑
i=1

[
w(Z(i))− w(Z(i+1))

]
z(i) (1.2)

=
n∑
i=1

[
z(i) − z(i−1)

]
w(Z(i)) (1.3)

where w is a capacity and (.) is any permutation of N such that z(1) ≤ . . . ≤ z(n), z(0) = 0,
Z(i) = {(i), . . . , (n)}, i = 1, . . . , n and Z(n+1) = ∅.

In words, z(i) corresponds to the ith highest marginal utility among (z1, . . . , zn) and
Z(i) contains the viewpoints for which the marginal utility is greater than or equal to z(i).

Remark 1.4 (marginal utilities commensurability). As the Choquet integral requires or-
dering marginal utilities zi, i = 1, . . . , n, they are usually assumed to be commensurate,
i.e., for any pair of viewpoints i, j ∈ N , zi ≥ zj means that zi is at least as good w.r.t.
the ith viewpoint as zj w.r.t. the jth viewpoint.

When capacity w is additive, i.e., w(S) = ∑
i∈S w({i}), it can easily be checked with

Equation 1.2 that Cw boils down to a weighted sum with weights w({i}), i = 1, . . . , n.
However, w is potentially non-additive, enabling the Choquet integral to account for
positive (resp. negative) synergies between viewpoints through super-additivity, e.g.,
for S = {i, j}, w({i, j}) > w({i}) + w({j}), (resp. sub-additivity, e.g., w({i, j}) <

w(i) + w({j})). The following example illustrates the aggregation performed by the
Choquet integral on a small example with three viewpoints (N = {1, 2, 3}):

Example 1.4. Let us consider an alternative whose marginal utilities (z1, z2, z3) are such
that z2 ≤ z1 ≤ z3. Equation 1.3 gives Cw(z1, z2, z3) = z2w({1, 2, 3}) + [z1− z2]w({1, 3}) +
[z3−z1]w({3}). As illustrated by Figure 1.1 (left), this computation first takes the smallest
marginal utility (z2) —achieved for all viewpoints— weighted by the grand coalition weight
(red area), and adds the increment (z1−z2) —achieved for viewpoints 1 and 3— weighted
by this viewpoint pair’s weight (orange area). Finally it adds the last increment (z3− z1)
—achieved for viewpoint 3—, weighted by this viewpoint weight (yellow area). The total
area can be equivalently computed using Equation 1.2 which, as represented by Figure 1.1
(right), amounts to computing the area with a different subdivision.
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z
w({3})

w({1, 3})

w({1, 2, 3})

z2 z1 z3
z

w({3})

w({1, 3})

w({1, 2, 3})

z2 z1 z3

Figure 1.1: Illustration of the Choquet integral computation for three viewpoints.

Remark that when w is additive, i.e., w({1, 2, 3}) = w({1}) +w({2}) +w({3}) = 1
and w({1, 3}) = w({1}) + w({3}), the area coincides with the integral of the decumu-
lative distribution of a discrete random variable taking values z1, z2, z3 with probabilities
w({1}), w({2}), w({3}). Such quantity coincides with the expectation of the latter ran-
dom variable. Indeed we have, Cw(z1, z2, z3) = z2(w({1}) + w({2}) + w({3})) + [z1 −
z2](w({1}) + w({3})) + [z3 − z1]w({3}) = w({1})z1 + w({2})z2 + w({3})z3. Thus, we
recover the fact that Cw boils down to the weighted sum when w is additive.

It is important to note that, for any S ⊆ N , Cw((1S,0S̄)) = w(S), where 0 and
1 are vectors in Rn whose components all equal 0 and 1 respectively. Consequently, if
the marginal utilities are taken in [0, 1], w(S) coincides with the utility of the alternative
which is completely satisfactory (resp. unsatisfactory) according to the viewpoints in
S (resp. S̄). In this sense, w(S) can be interpreted as the overall importance of the
group of viewpoints S. This overall importance can be further decomposed as a sum of
contributions from all possible subgroups, using the Möbius transform of w, denoted by
mw, and defined for any S ⊆ N by:

mw(S) =
∑
T⊆S

(−1)|S\T |w(T ) (1.4)

i.e., w(S) =
∑
T⊆S

mw(T )

For instance, for S = {i, j}, i, j ∈ N , mw({i, j}) = w({i, j}) − (w({i}) + w({j})).
Thus, by measuring the gap to additivity, coefficient mw({i, j}) indicates the contribution
of the sole interaction between viewpoints i and j to the group importance w({i, j}).
Remark that mw({i, j}) = Cw(1ij,0īj)− (Cw(1i,0ī) +Cw(1j,0j̄)). Thus, in other words,
mw({i, j}) quantifies the extra or lost satisfaction due to the joint satisfaction of both
viewpoints (compared to the sum of the satisfaction yielded by a separate satisfaction of
the two viewpoints).

Depending on their sign, coefficients mw(S), S ⊆ N (called Möbius masses) thus
allow revealing positive or negative synergies between viewpoints. Finally, Möbius trans-
form mw allows for a simple reformulation of the Choquet integral [Chateauneuf and
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Jaffray, 1989], as a sum of disjunctive or conjunctive (depending on the sign of the
Möbius coefficients) interaction terms:

Cw(z) = ∑
S⊆N mw(S) mini∈S{zi}, for any z ∈ [a, b]n. (1.5)

Another alternative representation of the capacity is the interaction indices repre-
sentation [Grabisch, 1997b], denoted by Iw and defined as follows:

Iw(S) =
∑

T⊆N\S

(n− |T | − |S|)!|T |!
(n− |S|+ 1)!

∑
L⊆S

(−1)|S\L|w(L ∪ T ) for any S ⊆ N. (1.6)

Coefficient Iw(S) can be interpreted as the average contribution of the group of
viewpoints S to the importance of the sets containing S. For instance, for S = {i, j},
Iw({i, j}) = ∑

T⊆N−ij

(n−|T |−2)!|T |!
(n−2+1)! (w(T ∪ {i, j}) − w(T ∪ i) − w(T ∪ j) + w(T )). When

S = {i}, the interaction index boils down to the Shapley values [Shapley, 1971], defined
by:

ϕi =
∑

T⊆N−i

(n− |T | − 1)!|T |!
n! (w(T ∪ {i})− w(T )) (1.7)

Equations allowing conversions between the different representations of a capacity
[Grabisch et al., 1998] are given in Table 1.2 where Bk denotes the k-th Bernoulli number
recursively defined by Bk = ∑k

l=0

(
k
l

)
Bl, for any k ∈ N.

w mw Iw

w — w(S) = ∑
T⊆Smw(T ) w(S) = ∑

T⊆N

[∑|T∩S|
k=0

(
|T∩S|
k

)
Bt−k

]
Iw(T )

mw Eq. 1.4 — mw(S) = ∑
T⊇S Bt−sIw(T )

Iw Eq. 1.6 Iw(S) = ∑
T⊇S

1
|T |−|S|+1mw(T ) —

Table 1.2: Conversion formulas for the different representations of a capacity.

A case of negative synergy between viewpoints was already illustrated in Example
1.3. The following example showcases real-life positive synergies:

Example 1.5. Let us consider two conflicting points of view (N = {1, 2}). For instance,
it could be rapidity and eco-friendliness regarding transport alternatives, or opinions of two
diverging political parties forming a parliamentary majority on potential prime ministers.
Let us now consider a set of three alternatives A,B,C whose marginal utilities expressed
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on a 0-20 scale are given in Table 1.3.

Alternative viewpoint 1 viewpoint 2

A 0 18
B 19 1
C 10 9.9

Table 1.3: Evaluations of three alternatives w.r.t. two conflicting viewpoints.

As the viewpoints are conflicting, no alternative is fully satisfying. Let us then
consider the following preferences: the balanced alternative is strictly preferred to the
unbalanced solutions, i.e., C ≻ A and C ≻ B. For instance, travelers with some ecological
awareness typically seek a compromise that allows for a reasonable travel time and an
acceptable ecological footprint, and political parties forming a coalition have generally
agreed beforehand to find a consensus prime minister. Let also assume that the two
unbalanced solutions are indifferent to the DM, i.e., A ∼ B.

Then, as illustrated by Figure 1.2-left that represents the alternatives according to
their marginal utilities, no linear aggregation can associate to C a strictly higher level
of satisfaction while associating to A and B the same level of satisfaction. However, a
positive synergy term αmin{x1, x2} with α > 0, can be used to grant additional value
to alternatives with correct evaluations w.r.t. both viewpoints. In Figure 1.2-right are
represented the level curves of an aggregation function fulfilling this condition, i.e., F (z) =
1
3(z1+z2)+ 1

3 min{z1, z2}. The balanced solution is assigned an overall value strictly higher
than 8 while the unbalanced solutions are assigned overall values strictly lower than 8.

A

B

C

A

B

C10

20

10

20

10 10 2020

F (z) = 6

F (z) = 8

F (z) = 10

Figure 1.2: A set of alternatives evaluated w.r.t. two conflicting viewpoints (Ex. 1.5).

By Equation 1.5, it can easily be checked that aggregation function F coincides with
a Choquet integral associated with the Möbius transform (mw({1}),mw({2}),mw({1, 2})) =
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(1
3 ,

1
3 ,

1
3). This Mobius transform corresponds to the capacity (w({1}), w({2}), w({1, 2})) =

(1
3 ,

2
3 , 1), which allows modeling a positive interaction between the two viewpoints through

super-additivity, i.e., w({1, 2})− (w({1}) + w({2})) = mw({1, 2}) = 1
3 > 0.

Taking into account all possible interactions between viewpoints provides extensive
flexibility in preference modeling but requires determining the 2n coefficients defining the
capacity. A frequent option used to control model complexity is to take into account
only interactions within groups of limited size, and thus to consider k-additive capacities,
defined as follows:

Definition 1.10 (k-additive capacity). A capacity w is k-additive if its Möbius trans-
form mw satisfies mw(S) = 0 for all S ⊆ N such that |S| > k, and there exists S ⊆ N ,
such that |S| = k and mw(S) > 0.

Whenever w is 1-additive, w(S) = ∑
i∈S w({i}), S ⊆ N and the Choquet integral

boils down to a weighted sum. Whenever w is 2 additive, the weighted sum is aug-
mented with a linear combination of pairwise minimum of type min{xi, xj} allowing the
representation of positive or negative synergies for every pair of criteria:

Cw(x) =
n∑
i=1

mw({i})xi +
∑
i,j

mw({i, j}) min{xi, xj} (1.8)

Another particular class of capacities are symmetric capacities, defined as follows:

Definition 1.11 (symmetric capacity). A capacity w is symmetric if for any A,B ⊆
N such that |A| = |B|, w(A) = w(B).

When capacity w is symmetric, we can define a weight wi such that wi = w(Si)−
w(Si−1), for any sets Si, Si−1 of sizes i and i − 1 . In this case, it can easily be checked
using Equation 1.2, that the Choquet integral boils down to an ordered weighted average
(OWA).

Definition 1.12 (ordered weighted average). For any z ∈ [a, b]n and any permuta-
tion (.) of N such that z(i−1) ≤ z(i), i = 1, . . . , n, OWAw(z) = ∑n

i=1 wiz(i), where w ∈ ∆n.

OWA aggregators include simple and well-known aggregation functions such as
the min operator mini∈N{zi} (for w = (1, 0, . . . , 0)), the max operator maxi∈N{zi} (for
w = (0, . . . , 0, 1)), and k-order statistics (for wk = 1 and wi = 0 for any i ̸= k). Note
that in the general case, the Choquet integral is an averaging operator, i.e., mini∈N{zi} ≤
Cv(z) ≤ maxi∈N{zi} for any z ∈ [a, b]n [Marichal, 2000].
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Finally, an additional interesting class of capacities is that of supermodular capac-
ities:

Definition 1.13 (supermodular capacity). A capacity w is supermodular (or con-
vex) if w(S ∪ T ) + w(S ∩ T ) ≥ w(S) + w(T ) for any S, T ⊆ N .

The capacity associated to the Choquet integral instance used in Example 1.5 to
model the preference for the balanced solution is supermodular since mw({1, 2}) = 1

3 > 0
and thus w({1, 2}) > w({1}) + w({2}). More generally, supermodular capacities are
known to promote solutions with balanced evaluation vectors using the Choquet integral
[Chateauneuf and Tallon, 2002b, Lesca and Perny, 2010].

For further properties of the Choquet integral, the interested reader may refer to
the several axiomatizations of the Choquet integral, proposed in the context of decision-
making under uncertainty [Schmeidler, 1989, Köbberling and Wakker, 2003] or multi-
criteria decision-making [Marichal, 2000, Timonin, 2015, Labreuche, 2018]. Let us now
present an even more general aggregation function, referred to as the bipolar Choquet in-
tegral, that allows performing a distinct aggregation of the “good” and “bad” evaluations
using distinct capacities.

Bipolar Choquet integral When marginal utility functions are valued in an interval
[a, b] endowed with a neutral level c ∈ [a, b], defining good evaluations (higher than the
neutral level) and bad evaluations (lower than the neutral level), the scale is said to be
bipolar. In such case, the bipolar Choquet integral extends the Choquet integral by using
two capacities that cooperate in weighting viewpoints or subset of viewpoints; one applies
to the positive part of the evaluation vector whereas the other applies to the negative part
[Labreuche and Grabisch, 2006a]. This extension, inspired by Kanheman and Tversky’s
cumulative prospect theory (CPT) [Tversky and Kahneman, 1979] in decision-making
under risk, allows the representation of decision behaviors that may vary depending on
whether good or bad consequences come into play. Denoted by BCw,w′ , it is formally
defined by:

Definition 1.14 (bipolar Choquet integral). For any z ∈ [a, b]n and two capaci-
ties w,w′, BCw,w′(z) = Cw(z+) + Cw(−z−), where z+ = (max(c, zi))ni=1 and z− =
(max(−c,−zi))ni=1.

it can easily be checked that Cw(z) = −Cw̄(−z) for any z ∈ [a, b]n, where w̄ is
the dual capacity of w defined by w̄(A) = 1 − w(N \ A) for all A ⊆ N . Therefore
BCw,w′(z) = Cw(z+)−Cw̄′(z−). This latter formulation makes more explicit the balance
between positive and negative arguments where losses are deducted from benefits such
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as in CPT. Moreover, if w′ = w, BCw,w′(z) = Cw(z+) + Cw(−z−) = Cw(z) and therefore
the bipolar Choquet integral boils down to the Choquet integral. The following example
illustrates the aggregation performed by BC on a toy example with three viewpoints:

Example 1.6. Let us consider three viewpoints and an alternative whose marginal util-
ities w.r.t. the three viewpoints (z1, z2, z3) are such that z2 ≤ 0 ≤ z1 ≤ z3 where 0 is
a neutral evaluation separating bad from good evaluations. Then we have BCw,w′(z) =
Cw(z1, 0, z3) + Cw′(0, z2, 0).

By allowing for a distinct aggregation of good and bad evaluations, the bipolar
Choquet integral allows for an even more descriptive power than the Choquet integral.
For a more in-depth introduction to the bipolar Choquet integral, interested readers may
refer to Labreuche and Grabisch [2006b], Martin and Perny [2021].

Another major example of an aggregation function that allows for interactions, also
based on a capacity, is the multilinear utility, which we present below:

Multilinear utility The multilinear utility, originally proposed in game theory [Owen,
1972], was introduced in decision theory for multiattribute decision-making under risk
[Keeney and Raiffa, 1976] and is also axiomatically justified for both multiattribute [Dyer
and Sarin, 1979] and multicriteria decision-making [Grabisch et al., 2016, Chap. 6]. Sim-
ilarly to the Choquet integral, the multilinear utility, denoted by MLw, allows modeling
interactions between viewpoints through the use of a capacity w. The aggregation per-
formed by MLw is given below:

Definition 1.15 (multilinear utility). For any z ∈ [a, b]n and any capacity w, MLw(z) =∑
S⊆N w(S)∏i∈S zi

∏
i/∈S(1− zi).

Similarly to the Choquet integral, the multilinear utility can be expressed using the
Möbius transform:

MLw(z) = ∑
S⊆N mw(S)∏i∈S zi (1.9)

Equation 1.5 and Equation 1.9 reveal that the multilinear utility has a form similar
to the Choquet integral, with the interaction terms mini∈S{zi} being substituted by prod-
uct interaction terms ∏i∈S zi. In the following example, we illustrate how this difference
may impact preference modeling.

Example 1.7. Let us consider a toy case involving two conflicting viewpoints and a set
of non Pareto-dominated alternatives, yielding the Pareto front represented in Figure 1.3.
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Among them, we have highlighted the alternatives for which there exists a weight w that
makes it the optimal alternative, with the Choquet integral Cw (on the left in yellow or
black), with the multilinear utility MLw (on the right graph in red or black), and with
the weighted sum WSw (in black only on the two graphs). We observe that the Choquet
integral and the multilinear utility enable accessing different sets of alternatives. Also,
the higher descriptive power of models with interactions compared to the weighted sum
remains clear here, as the weighted sum is again limited to modeling preference for the
unbalanced alternatives constituting the convex hull of the alternative set (black points).

Weighted sum
Choquet integral

Weighted sum
Multilinear model

10

20

10 20

convex hull

other non-dominated alternatives

10

20

10 20

Figure 1.3: Alternatives accessible by maximizing WSw, Cw and MLw.

Note that both the Choquet integral Cw and multilinear utility MLw, when defined
on the unit hypercube [0, 1]n, are extensions of the capacity w on this same hypercube.
Indeed, the vertices of the unit cube correspond to the vectors (1S,0−S), S ⊆ N , and it
can easily be checked that Cw((1S,0−S)) = MLw((1S,0−S)) = w(S). More precisely, the
Choquet integral corresponds to a parsimonious (i.e., using the fewest possible number
of vertices) linear interpolation, while the multilinear utility MLw corresponds to an
interpolation that uses all possible vertices [Singer, 1985, Grabisch et al., 2016]. The
two distinct interpolations defining Cw and MLw are represented in Figure 1.4(left) and
Figure 1.4(right) for n = 2 and a capacity w defined by w({1}) = w({2}) = 0.2.
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Figure 1.4: Cw (left) and MLw (right) as two distinct interpolations of w on the unit
square.

As illustrated in Example 1.7, despite the enhanced descriptive power of the Cho-
quet integral or the multilinear utility compared to the weighted sum, some non Pareto-
dominated alternatives may not be accessible by maximizing Cw(z) or MLw(z). In con-
texts where no prior information about the preference system of the DM is available, it
may be the case that any non Pareto-dominated alternative is of possible interest and
must be accessible by the aggregation function. In this case, the standard approach is to
use a weighted Chebyshev norm.

Weighted Chebyshev norm The weighted Chebyshev norm (also known as the weight-
ed infinite norm) defined by ∥z∥w,∞ = maxi∈N{wi|zi|} for any z ∈ [a, b]n and w ∈
∆n, makes it possible to measure distances between solutions by taking into account
the importance attributed to the viewpoints through weights wi, i = 1, . . . , n. Thus,
it can be used to quantify the overall quality of a solution in a set XP of non Pareto-
dominated solutions as its proximity to the ideal point (the fictitious alternative with
maximal marginal utilities w.r.t. every viewpoint) [Wierzbicki, 1986]. This yields the
following scalarizing function, denoted by Tw, and defined by:

Definition 1.16 (weighted Chebyshev distance). For any z ∈ XP ⊆ [a, b]n, Tw(z) =
−maxi∈N{wi|zi − Ii|}, where w ∈ ∆n and I is the ideal point whose coordinates Ii are
defined by Ii = maxz∈Xp{zi} for any i ∈ N .

By adjusting weights wi, i = 1, . . . , n, a wide range of preference behaviors can be
modeled. More formally, for any non Pareto-dominated alternative z ∈ XP , there exists a
weight vector w ∈ ∆n such that z is the preferred alternative, i.e., z = arg maxz′∈XP

Tw(z′)
[Wierzbicki, 1986]. Therefore, contrarily to the Choquet integral or multilinear utility,
the weighted Chebyshev distance allows access to every single point of the Pareto front
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of Figure 1.3. However, as it is illustrated in the following example, this does not imply
that Tw(z) can capture any preference order within XP .

Example 1.8. Let us consider a set XP of four non Pareto-dominated alternatives
A,B,C,D whose marginal utilities w.r.t. three viewpoints are given below.

viewpoint 1 viewpoint 2 viewpoint 3

A 1 0.5 1
B 0.5 1 1
C 1 0.5 0
D 0.5 1 0

As preferences A ≻ B and D ≻ C violate mutual preferential independence for
S = {1, 2}, the order A ≻ B ≻ D ≻ C can not be represented using a weighted sum (see
Remark 1.2). Furthermore, the ideal point is I = (1, 1, 1) and thus preferences A ≻ B

and D ≻ C are representable with Tw if and only if Tw(1, 0.5, 1) > Tw(0.5, 1, 1) and
Tw(0.5, 1, 0) > Tw(0.5, 1, 0), which is in turn equivalent to w1 > w2 and max{1

2w2, w3} >
max{1

2w1, w3} and is thus contradictory. Then such order cannot be described with a
weighted Chebyshev norm. However, the Choquet integral Cw(z) = 4

10z2 + 6
10 min{z1, z2}

allows representing both preferences A ≻ B and D ≻ C. Indeed Cw(1, 0.5, 1) = 13
10 >

12
10 =

Cw(0.5, 1, 1) and Cw(0.5, 0, 0) = 4
10 >

2
10 = Cw(1, 0.5, 0).

Finally, we briefly present the Sugeno integral, often regarded as the ordinal coun-
terpart of the Choquet integral:

Sugeno integral Similarly to the Choquet integral, the Sugeno integral [Sugeno, 1974]
was initially used in decision-making under uncertainty [Dubois et al., 1998] and exploited
later in multicriteria decision-making [Grabisch and Labreuche, 2010]. Denoted by Sw,
it also employs a capacity w to aggregate the marginal utilities so as to account for
viewpoint interaction. However, it differs from the Choquet integral in that the arithmetic
operations (+,×) are replaced by (max,min) operations:

Definition 1.17 (Sugeno integral). For any z ∈ [0, 1]n and any permutation (.) of N
such that z(i−1) ≤ z(i), i = 1, . . . , n, Z(i) = {(i), . . . , (n)}, Sw(z) = maxi∈N min{z(i), w(Z(i))},
where w is a capacity. Note that marginal utilities and capacity values have to be expressed
on the same scale.

In the next section, we present a highly flexible model that generalizes totally
decomposable utility functions, referred to as GAI-decomposable utility functions.
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1.4 GAI-decomposable Utility Functions

GAI-decomposable utility functions, where GAI stands for Generalized Additive
Independence, have been proposed in multiattribute utility theory by Fishburn [1970] as
a generalization of additive utility functions. In words, it is an additive decomposition of
the utility function in multivariate terms that reflect interactions between viewpoints. It
can be formally defined as follows:

Definition 1.18 (GAI-decomposable utility). Let F be a collection of possibly over-
lapping subsets of N . A utility function U : X → R is GAI-decomposable w.r.t. to F if
there exists functions uS : XS → R, S ∈ F such that :

U(x) =
∑
S∈F

uS(xS), for any x ∈ X

Obviously, any real-valued function U : X → R can be regarded as a GAI-
decomposable function by taking F = {N} and uN(x) = U(x). Also, by Equations
1.5 and 1.9, both the multilinear utility and the Choquet integral of marginal utilities
can be recovered by taking F = 2N , and for any S ⊆ N , uS(xS) = mw(S)∏i∈S ui(xi) and
uS(xS) = mw(S) mini∈S{ui(xi)} respectively.

However, by making no assumption on the kind of interaction and allowing com-
pletely general interaction terms uS, GAI-decomposable utility function can be much
more flexible than totally decomposable functions. In particular, they allow for the
representation of complex preferences involving interactions between viewpoints, even
in cases where weak separability does not hold (see Remark 1.3) and therefore totally
decomposable models fail. This is illustrated by the following example:

Example 1.9. Let us take the example of a DM selecting a holiday rental house based on
the following attributes: (1) localization type: {seaside, city, high mountains}, (2) room
number: {1,2,3}, (3) fun feature: {pool, jacuzzi, sauna}, and (4) neighbor proximity:
{isolated, moderate distance, close}. She is likely to prefer a swimming pool to a sauna
for a house by the sea, whereas she will prefer a sauna in high mountains. Similarly, she
is likely to choose not to be stuck next to her neighbor in high mountains, while preferring
to stay in a dense area such as an historic center, and avoid empty industrial zones, when
staying in the city. Then, the four following preferences are likely to be encountered:

- P1: (seaside, 2, pool, moderate distance) ≻ (seaside, 2, sauna, moderate distance);

- P2: (high mountains, 2, sauna, moderate distance) ≻ (high mountains, 2, pool,
moderate distance);
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1
3 pool jacuzzi sauna

seaside 1 0.8 0.5
city 1 0.5 0.2

high mountains 0.5 1 1

Table 1.4: Values of u1,3.

1
4 isolated moderate distance close

seaside 1 0.8 0.5
city 0 0.5 1

high mountains 1 0.5 0

Table 1.5: Values of u1,4.

- P3: (high mountains, 2, jacuzzi, isolated) ≻ (high mountains, 2, jacuzzi, close);

- P4: (city, 2, jacuzzi, close) ≻ (city, 2, jacuzzi, isolated)

However, no totally decomposable utility function can account for these preferences,
since P1 and P2 on the one hand, and P3 and P4 on the other, constitute violations of
weak separability (see Remark 1.2) for i = 3 and i = 4 respectively. In other words,
preferences over the elements {pool, jacuzzi, sauna} on the one hand, and {isolated,
moderately distant, close} on the other, both depend on the location of the house. However,
preferences P1, P2, P3 and P4, can be captured by a GAI-decomposable utility function
accounting for the interaction between the localization and the fun feature on one hand,
and between the localization and the neighbor proximity on the other. For instance, it can
easily be checked that the GAI function U(x) = u1,3(x1, x3) + u1,4(x1, x4) with u1,3 and
u1,4 defined in Table 1.4 and Table 1.5 is compatible.

Finally, we conclude this section by presenting in Figure 1.5 a way to identify the
family of utility functions one may want to consider, depending on whether the preferences
(those we wish to describe with the model, or those we aim to construct using the model)
satisfy mutual independence and weak separability.

2 Preference Elicitation

Preference elicitation [Tversky, 1977, Boutilier et al., 1997, Mousseau and Pirlot,
2015] involves interacting with the DM to collect information allowing an accurate mod-
eling of her preferences. In particular, the objective is to align with the DM’s value
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mutual preferential independence?

additive utility

weak separability?

totally decomposable models GAI-decomposable utility

yes

yes no

no

Figure 1.5: Utility function models depending on verified conditions on preferences.

system the parameters of the preference models introduced in the previous section, i.e.,
marginal utilities ui, i = 1, . . . , n and parameter w of the aggregation functions for totally
decomposable utility function, or GAI factors uS, S ⊆ N for GAI-decomposable utility
functions. This is generally achieved using questionnaires that ask for the ranking or rat-
ing of alternatives, followed by the search for parameters consistent with the responses
using some operations research techniques such as linear programming. In this section,
we give a brief overview of standard preference elicitation approaches for both totally
decomposable models and GAI-decomposable utility functions.

2.1 Marginal Utilities Elicitation

In the framework of the additive utility, marginal utility functions ui are tradition-
ally elicited by incrementally constructing standard sequences of points (xki , ui(xki ))

q
k=1 on

the utility curve [Krantz and Tversky, 1971, Von Winterfeldt and Edwards, 1986, Bouys-
sou, 2000]. As an illustration, let us consider two viewpoints, and two reference points
x0 = (x0

1, x
0
2) and x1 = (x1

1, x
1
2) where u1, u2 are arbitrarily fixed, i.e., u1(x0

1) = u2(x0
2) = 0

and u1(x1
1) = u2(x1

2) = 1. Then, a standard sequence for u1 can be obtained iter-
atively, by asking at each iteration k ≥ 2, “what is the consequence xk1 such that
(xk1, x0

2) ∼ (xk−1
1 , x1

2)?”. Hence, we have that u1(xk1) = 1 + u1(xk−1
1 ), i.e., u1(xk) = k,

for any k ≥ 1. However, since each query relies on the answer of the previous query, stan-
dard sequences methods suffer from noise propagation [Blavatskyy, 2006]. In multicriteria
decision-making, a more robust approach is the UTA (UTility Additive) [Jacquet-Lagreze
and Siskos, 1982] that elicits marginal utilities in the additive value model by performing
an ordinal regression from a set of priorly acquired pairwise preference or indifference
statements.

When DM’s preferences are modeled using a Choquet integral or a multilinear ag-
gregation with a capacity w, the indifference statements used in the standard sequences
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of the form (xk1, x0
2) ∼ (xk−1

1 , x1
2) translate into an equation that now involves w({1}),

w({2}), u1(xk1), and u1(xk−1
1 ). Thus, since w({1}) and w({2}) are unknown, these equa-

tions do not allow us to deduce u1(xk1) from u1(xk−1
1 ), contrary to the case of the additive

utility. A standard approach to circumvent this latter issue is to proceed in two steps:
the marginal utilities are first elicited using specific queries that disentangle the respec-
tive impact of the marginal utility functions and the capacity, and then the capacity is
determined.

A standard method for marginal utilities elicitation in multicriteria decision-making,
is the Macbeth method [Bana e Costa and Vansnick, 1997]. This method relies on direct
queries of utility values ui(xi) for some consequences xi, and pairwise preference inten-
sity queries (e.g., “is the difference of attractiveness between alternative a and b weak or
strong?”). In decision-making under risk, some elicitation protocols under the form of
standard sequences have been proposed [Wakker and Deneffe, 1996, Abdellaoui, 2000] for
the RDU model (Rank Dependent Utility) [Quiggin, 2012] and the CPT model [Kahne-
man and Tversky, 1979], which are respectively specific instances of the Choquet integral
and bipolar Choquet integral for capacities defined as monotone transforms of probabil-
ity measures. Marginal utilities within the multilinear model can also be elicited using
standard sequences in decision-making under uncertainty [Keeney et al., 1993]. They can
alternatively be derived from comparisons of preference intensities (e.g., “Is the difference
of attractiveness between alternative a and b higher than between alternative c and d?”)
in multicriteria/multiattribute decision-making [Grabisch, 2016b].

Thus, existing approaches for eliciting marginal utilities in the totally decomposable
model with non-linear aggregation rely either on queries that the DM may struggle to
answer (e.g., queries on utility values in MACBETH) or on standard sequences that are
sensitive to response errors. Furthermore, approaches relying on standard sequences are
only formulated for the multilinear model or specific instances of the Choquet integral
(e.g., RDU, CPT). This motivates us to introduce a regression-based method for eliciting
in a noise tolerant manner the marginal utilities within the general Choquet integral
model (or even more generally, within the bipolar Choquet integral model) in Chapter 2
of this thesis.

Remark 1.5 (simultaneous elicitation of utilities and capacities). Other contributions pro-
pose to determine simultaneously the marginal utility functions and the capacity. How-
ever, simultaneous optimization of both parameters yields non-convex optimization prob-
lems with quadratic constraints involving products of variables ui(xi) × w(S). Some
heuristics to solve this problem were proposed. A stochastic method was introduced
by [Angilella et al., 2004, 2015], and [Goujon and Labreuche, 2013, Goujon, 2018] dis-
cussed a fixed-point method where the problem is split into two iterative linear tasks.
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Another heuristic based on a linear approximation of the product of the marginal utility
functions with interaction indices was considered by [Galand and Mayag, 2017a]. Addi-
tional approaches that leverage machine learning tools are discussed in Section 3.2.2.

2.2 Aggregation Function Parameter Elicitation

After the elicitation of the marginal utilities, the determination of the parameter
w of aggregation function Fw has to be addressed. Two types of approaches can be dis-
tinguished: elicitation with the aim of solving a specific decision problem and elicitation
with the aim of determining a model that is a good representation of the DM’s preferences
in general.

2.2.1 Decision-focused Elicitation

Decision-focused elicitation methods aim at collecting information about parameter
w with the objective of solving a specific decision problem (usually a choice between
a set of alternatives). This setting is therefore highly related to preference-driven (or
interactive) multi-objective optimization [Wierzbicki, 2005] where the goal is to reveal
alternatives of interest for the DM within a set of non Pareto-dominated alternatives.
Two main families of approaches can be further distinguished:

The local and interactive judgment approach: An initial vector of parameters w is
chosen, an optimal solution for Fw is calculated, and then w is allowed to evolve according
to user feedbacks until a solution satisfying the DM is reached. This approach, widely
used in interactive multicriteria optimization [Steuer, 1986, Vanderpooten and Vincke,
1989], allows a user-driven exploration of the Pareto set, alternating phases of calculation
of the current optimal solution and phases of dialogue with the user during which w is
updated. It may require numerous interactions, and the quality of the solution chosen at
the end of the process is only validated by the DM’s instant sense of satisfaction.

Incremental preference elicitation: Incremental preference elicitation refers to a set
of methods that incrementally increase the knowledge on parameter w and stop as soon
as this knowledge is sufficient to solve the decision problem (for example, when a neces-
sarily preferred alternative emerges). A first approach to incremental elicitation consists
in progressively reducing the space of admissible values for parameter w. Iteratively, a
preference query is chosen, the answer to which induces a new constraint on the space
of admissible values for w. Thus, the set of parameter values compatible with the con-
straints induced by the expressed preference judgments is progressively reduced until the
point where an alternative proves optimal (or near optimal) for all remaining admissible
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parameter values. This approach is introduced in the ISMAUT method [White et al.,
1984]. A principle of active question selection is often used, based on the minimization
of maximum regret, to choose the most informative question [Wang and Boutilier, 2003,
Boutilier et al., 2006, Benabbou et al., 2017a] and derive a robust recommendation. An-
other approach, more tolerant to noisy responses, is to manage a probability distribution
over the parameter space and revise it according to the answers to questions, to choose
a decision having the maximum expected value [Chajewska et al., 2000] or minimizing
the expectation of regret [Bourdache et al., 2019a]. This type of approach can also be
adapted to other uncertainty models such as possibility theory [Adam and Destercke,
2024].

These methods are question-saving, as they direct the questionnaire towards the
resolution of a particular instance of decision problem. In the same spirit than incre-
mental preference elicitation, robust ordinal regressions approaches [Greco et al., 2008,
Angilella et al., 2010, Corrente et al., 2013, Gilbert et al., 2025] aim at using the whole
set of parameter values compatible with the observed preferences to formulate robust
recommendations, i.e., consistent with all admissible parameters values. Thus, these two
types of methods do not determine a specific preference parameter w. Therefore, they
are generally not sufficient to obtain representations of DM’s preferences or to solve a
decision problem involving a new set of alternatives. In the following section, we present
another type of approach, which is the one adopted in this thesis, aimed precisely at
identifying from a preference database, a parameter w that is a good representation of the
DM’s preferences.

2.2.2 Regression-based Elicitation from a Database of Preference Statements

An important stream of work developed in the literature on multicriteria decision-
making concerns the use of regressions for the identification of the capacity parameterizing
the Choquet integral, assuming the marginal utilities are known [Grabisch et al., 2008,
Grabisch and Labreuche, 2010, Beliakov and Wu, 2019b, 2021]. These regressions are
formulated as optimization problems on the set of admissible parameter values, where
either the deviation from the observed utility values or the violation of the constraints
induced by preferential information such as pairwise preference examples, is minimized
(in the latter case they are called ordinal regressions).

In particular, we can mention least squares regression with examples of alterna-
tives utility values prescribed by the DM where the objective is to minimize the average
squared error with the given values [Murofushi and Sugeno, 1989]. Alternatively, max-
imum margin problems have been formulated to search for parameters that maximize
the utility gap between two alternatives involved in a pairwise preference example using
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linear programming [Marichal, 2000]. Some recent contributions using regression also
exist for the multilinear model [Pelegrina et al., 2018, 2020a].

Capacities being defined by 2n − 1 parameters in general, the aforementioned op-
timization problems quickly become intractable as n increases beyond a dozen, whereas
the available preference data may not require such a complex model to be well described.
Additionally, such a high number of parameters severely limits the interpretability of
the model. A common way to overcome these issues is to use k-additive capacities (see
Definition 1.10) [Grabisch et al., 2008, Galand and Mayag, 2017b, Ah-Pine et al., 2018,
Pelegrina et al., 2020a] (k = 2 being the most common choice). Similar restrictions exist
for limiting interactions with the notion of k-interactivity [Beliakov and Wu, 2019b] or
k-maxitivity [Beliakov and Wu, 2021]. However, such prior restrictions require arbitrar-
ily setting the maximum size of allowed interactions k and significantly limit the model
flexibility.

Consequently, there is a need for advanced regression techniques to identify capacity
parameters that remain tractable as n increases and that yield simple and interpretable
models, without relying on prior restrictions of model flexibility based on cardinality,
such as k-additivity. To develop such approaches, we propose to explore the problem
of determining the capacity from a database of preference statements from the perspec-
tive of machine learning and optimization whose intersection provides a framework to
formulate parameter learning problems based on statistical theory, while also developing
optimization methods for efficiently solving these problems.

2.3 GAI Elicitation

The construction of a GAI-decomposable utility function from preference informa-
tion requires the determination of the relevant factors to be used in the decomposition
(i.e., collection F of subsets of N) as well as the determination of sub-value functions on
these factors (i.e., uS(xS) for any S ∈ F). Some contributions focus on the elicitation
of these sub-utility functions, assuming the decomposition of the utility function into
factors is known [Gonzales and Perny, 2004, 2005, Braziunas and Boutilier, 2005, Brazi-
unas, 2012]. The proposed methods involve constructing subutilities factors uS(xS) in a
specific order to exploit conditional independence and then rescaling them to align with
previously determined subutilities factors. The construction of each subfactor rely on
pairwise indifference queries (e.g., “what can be changed in the consequences of alterna-
tive a to make you indifferent between alternatives a and b?”). Some other contributions
tackle the problem of learning the decomposition. For instance, a procedure to determine
a monotonic well-formed GAI-decomposition from pairwise preference queries (e.g., “ Is
alternative a at least as good as alternative b?”) was recently proposed [Grabisch et al.,

31



Chapter 1. Preference Modeling and Preference Learning

2022]. In this work, interactions are limited to pairs of viewpoints.
Therefore, all the above-mentioned contributions either assume that the structure

of the GAI decomposition is known or that it is limited to interactions involving very
few attributes. The construction of a GAI-decomposable utility function with no prior
assumption on the size of the interacting groups of viewpoints from preference information
thus remains to be addressed. Once again, this thesis aim at leveraging tools from the field
of machine learning and optimization to address this challenge. For this reason, we present
in the next section the general framework of supervised learning and the optimization
methods commonly used to address the formulated learning problems, as well as the
specificities of learning preference models, a question that sparked the development of a
whole domain in machine learning known as preference learning.

3 Preference Learning

In preference learning or preference-based machine learning [Fürnkranz and Hüller-
meier, 2010b, Domshlak et al., 2011a, Busa-Fekete and Hüllermeier, 2014, Wirth et al.,
2017, Hüllermeier and Słowiński, 2024a,b], the goal is to learn preference models from
preference information. This field is part of a broader discipline, machine learning, which
aims to design algorithms that can learn from data and make predictions. Machine learn-
ing algorithms usually rely on mathematical or computational models whose parameters
are optimized to achieve accurate prediction on data. When data is labeled (i.e., it con-
sists of input data tagged with the true output), learning algorithms are called supervised
learning algorithms. Otherwise, when the algorithm itself has to identify useful labels
for prediction, they are referred to as unsupervised learning algorithms. As preferential
information can be regarded as labeled data, preference learning algorithms typically fall
into the first of these categories. For instance, examples of alternative utility values or
pairwise comparisons consist of alternatives or pairs of alternatives (inputs) associated
with ratings or rankings (labels). Therefore, this section is naturally organized in two
parts: the general framework of supervised learning is first presented, and then, pref-
erence learning is specifically discussed with a focus on preference models derived from
decision theory presented in Section 1.

More precisely, supervised learning is first presented as the formulation of a regular-
ized empirical risk minimization (RERM) problem, and then an important focus is put
on the optimization method to solve the RERM problem. In this regard, notions of (con-
vex) optimization are included throughout the section. The emphasis on the optimization
aspect is motivated by the fact that, as underlined at the end of the previous section, a
main concern is to derive computationally efficient methods to learn preference models
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(e.g., capacities defined by an exponential number of parameters). Concerns relative to
the learning theory such as “what is the worst prediction error I could do on a new ex-
ample if I learn a model with t examples?” or conversely “how many inputs examples are
needed to correctly learn a model?” are not discussed in this introduction. The reader
interested in these questions may refer for instance to the introduction [Bousquet et al.,
2003] or the books [Vapnik, 1995, Devroye et al., 1996, Shalev-Shwartz and Ben-David,
2014].

Notations The reader is assumed to be familiar with the basic notions of probability
theory, as well as with the Bachman-Landau notations O, θ,Ω. Also, by convention, 1{C}

equals 0 when condition C is met and 0 otherwise.

3.1 Supervised Learning Framework

3.1.1 Problem Formulation

The starting point of a supervised learning algorithm is a labeled dataset D ={(
xℓ, yℓ

)}t
ℓ=1

that contains t samples of inputs, denoted by xℓ, and their labels, denoted
by yℓ. The inputs are multi-dimensional vectors x = (x1, . . . , xn) belonging to an input
space denoted by X , typically taken as Rn. Their corresponding labels are elements of
an output space denoted by Y , the definition of which varies depending on the context.
When Y = R, the learning task is referred to as a regression task, while when Y is a
finite set of the form Y = {y1, . . . yK}, the learning task is referred to as a classification
task and elements of Y denotes class membership. In the classification setting, the binary
classification that uses two classes only (e.g., Y = {−1, 1}) can be distinguished from
the multiclass classification that uses K > 2 classes. Finally, the training examples in D
are regarded as realizations of t random variables (Xℓ, Y ℓ), ℓ = 1, . . . , t, assumed to be
independent and identically distributed (i.i.d.) according to a joint distribution D defined
over X × Y , describing the chances of encountering particular pairs (x, y) ∈ X × Y in
real life.

Then, the goal of a supervised learning algorithm is to exploit dataset D to find the
model h in a hypothesis class H that allows to best predict the label value y of an instance
x. More precisely, a hypothesis class is a set of functions h : X → Y that assign label h(x)
to any input x ∈ X . The quality of a prediction is then assessed through a loss function
l : Y ×Y → R that measures the discrepancy between a prediction h(x) and a true label
y. Loss functions can take various forms depending on the learning task. For instance,
for regression tasks standard choices are the squared loss l(h(x), y) = 1

2(h(x)− y)2 or the
absolute loss l(h(x), y) = |h(x)− y|. For binary classification tasks, standard choices are
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the 0-1 loss l(h(x), y) = 1{h(x) ̸=y} and the hinge loss l(h(x), y) = max{0, 1 − h(x)y} or
the logistic loss log(1 + e−yh(x)) for classifiers of the form sign(h(x)) based on a regression
function h : Rn → R. Then, when loss function l is specified, the model h ∈ H that has
the smallest chance of making a wrong prediction is the one that minimizes the true risk,
denoted by R(h) and defined as the loss expectation w.r.t. D, i.e.,:

Definition 1.19 (true risk). For any h ∈ H,

R(h) = E(X,Y )∼D[l(h(X), Y )] =
∫

X ×Y
l(h(x), y)p(x, y)dxdy

where p is the probability density function of distribution D.

In words, the true risk represents the average prediction error made by a model on
all possible data. However, distribution D is typically unknown, making the true risk
impossible to compute. A way to bypass this issue is to compute the empirical risk on
the available data D, denoted by Remp(h,D), and defined as the average loss on D:

Definition 1.20 (empirical risk). For any h ∈ H and dataset D =
{(
xℓ, yℓ

)}t
ℓ=1

,
Remp(h,D) = 1

t

∑t
ℓ=1 l(h(xℓ), yℓ). Let also define, for any h ∈ H, the random variable

Remp(h) = 1
t

∑t
ℓ=1 l(h(Xℓ), Y ℓ).

The task of minimizing the empirical risk over a hypothesis class is referred to as
empirical risk minimization (ERM) and was initially theorized by Vapnik (See [Vapnik
and Chervonenkis, 1971, Vapnik, 1991]). The empirical risk Remp(h) of a model h is a
good estimate of its true risk R(h) in the sense that its expected value equals R(h)1.
However, this is not enough to guarantee that, for a training dataset D, the minimizer
of Remp(., D) has a true risk close to the minimal true risk [Vapnik, 1991]. For instance,
if H is complex enough to contain a model h such that h(xℓ) = yℓ, ℓ = 1, . . . , t, then,
while yielding zero empirical error, h might be nothing more than a memorization of the
training data. Thus, h is likely to make poor predictions on unseen data, resulting in a
high true risk. This overfitting scenario is illustrated in Figure 1.6 for a one-dimensional
regression task (X = R,Y = R).

1Since (Xℓ, Y ℓ) are i.i.d. according to distribution D, E[Remp(h)] =
1
t

∑t
ℓ=1 E(Xℓ,Y ℓ)∼D[l(h(Xℓ), Yℓ)] = 1

t

∑t
ℓ=1 R(h) = R(h).
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x

y

training examples (xℓ, yℓ)
true risk minimizer
empirical risk minimizer

Figure 1.6: Overfitting illustration for a regression task in one dimension (X = R,Y = R).

As suggested by Figure 1.6, the interpolation of all training examples is the result
of a highly flexible hypothesis class containing extremely sensitive models, i.e., for which
a small input change can result in a large output variation. Then, a way to overcome
overfitting is to promote models with low sensitivity, by penalizing the empirical risk using
regularization functions that measure models’ sensitivity. For instance, considering linear
models hw(x) = w1x1 + . . . + wnxn, a suitable regularization function is the Euclidean
norm of the weight vector w defined by ∥w∥2 =

√∑n
i=1 w

2
i . Indeed, using Cauchy-

Schwartz inequality we have that for any x, x′ ∈ X , |hw(x)−hw(x′)| ≤ ∥w∥2∥x−x′∥2 and
thus when ∥w∥2 is small, a minor input variation ∥x− x′∥2 yields a small output change
|hw(x) − hw(x′)|. In the following, the regularized empirical risk approach is further
investigated.

3.1.2 Regularized Empirical Risk Minimization

Regularized empirical risk minimization (RERM) [Vapnik, 1995] involves minimiz-
ing the empirical risk along with a regularization term to avoid overfitting. Usually,
functions h are parametrized by some parameters w and thus the hypothesis class can
be defined as HW = {hw|w ∈ W}, where W is the set of admissible parameters. In this
context, the regularization term is a function r : W → R that penalizes elements of HW

with a high sensitivity. A RERM can thus be defined as follows:

Definition 1.21 (RERM). The RERM problem for hypothesis class HW , loss func-
tion l, regularization function r, and training data D =

{(
xℓ, yℓ

)}t
ℓ=1

, is the following
optimization problem:

min
w∈W

1
t

t∑
ℓ=1

l(hw(xℓ), yℓ) + λr(w)

where λ ∈ R+ is a regularization hyperparameter.

Intuitively, RERM allows finding a tradeoff between fitting the training data and
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keeping the model simple enough to make accurate predictions on unseen data. This
tradeoff is controlled by the regularization parameter λ: the higher the regularization
the lower the sensitivity of the solution of the RERM problem. In the following, model’s
parameters w are supposed to be d-dimensional vectors, with d ∈ N∗. In this case,
regularization functions are typically ℓp-norms, defined below:

Definition 1.22 (ℓp-norms). For any p ≥ 1, the ℓp-norm function is denoted by ∥w∥p,
and defined as:

∥w∥p =
(

d∑
i=1
|wi|p

)1/p

, for any w ∈ Rd.

Remark that the Euclidean norm corresponds to the case p = 2. More generally, ℓp-norms
provide a structured way to control the model complexity by pushing the magnitude of
the coefficients towards zero. The choice of ℓp-norms as regularization functions is further
supported by their mathematical properties, which allow for efficient optimization and
theoretical analysis of the RERM optimization problems. In particular, an important
property is convexity, which is defined in the following paragraph:

Basic notions of convex analysis A fundamental concept of convex analysis [Rock-
afellar, 1997, Boyd and Vandenberghe, 2004, Nesterov et al., 2018] is that of convex set.

Definition 1.23 (convex set). A set W ⊆ Rd is convex if tw + (1− t)v ∈ W , for any
v, w ∈ W and t ∈ [0, 1].

Let domf denotes the domain of a function f : Rd → R, i.e., the set of points on
which f is finite. Then, convex functions are defined as follows:

Definition 1.24 (convex function). A function f : Rd → R is convex if domf is a
convex set and f(tw + (1− t)v) ≤ tf(w) + (1− t)f(v), for any v, w ∈ Rd and t ∈ [0, 1].
A function f is said to be strictly convex if the inequality is strict whenever w ̸= v and
t ∈]0, 1[. Finally, f is said to be concave if −f is convex.

As illustrated in Figure 1.7 a function is convex if its epigraph (the region above
its graph) forms a convex set (for any two points in it, the line segment connecting them
stays inside the set).

Finally, strong convexity ensures that the gap between the line segment joining
points (w, f(w)) and (v, f(v)) and the curve of f grows quadratically with the distance
between u and w, i.e.,:

Definition 1.25 (strong convexity). A function f : Rd → R is said to be strongly
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f(w)

v w

f(v)

Figure 1.7: A convex function f : R→ R

convex with modulus α > 0 if for all w, v ∈ Rd and for all t ∈ [0, 1], we have:

f(tw + (1− t)v) ≤ tf(w) + (1− t)f(v)− α

2 t(1− t)∥w − v∥
2.

In this case f is said to be α-strongly convex

Then, a convex optimization problem refers to the minimization of a convex function
f over a convex set W . A key property of convex optimization problems is that any local
minimum is also a global minimum, and is unique if f is strongly convex (see for instance
[Boyd and Vandenberghe, 2004]- Section 4.2.2 and 9.1.2 ). Classic optimization algorithms
are detailed in Section 3.1.4. Note that to ensure that the optimization problem is well-
posed and to obtain convergence guarantees of optimization algorithms, f is often further
assumed to be proper and closed, i.e.:

Definition 1.26 (proper closed convex function). If a function f : Rd → R is con-
vex, then it is a proper function if domf ̸= ∅ and f never takes the value −∞. Further-
more, it is a closed function if for each α ∈ R the sublevel set {w ∈ dom f | f(w) ≤ α}
is a closed set.

ℓp-norms are convex functions, and so are standard loss functions l (e.g., squared
loss, absolute loss, hinge loss). Thus, for example, using a linear model hw(x) = w⊤x,
function f(w) = 1

t

∑t
ℓ=1 l(hw(xℓ), yℓ) is a convex function, as it is a combination of a

linear function and a convex function. Therefore, for convex sets of admissible param-
eters W , RERM problems are often formulated as convex optimization problems, which
enables the use of efficient optimization algorithms converging to global minima (detailed
in Section 3.1.4). Below, we present a representative example of ℓ2-regularized empirical
risk minimization problem, which will be revisited later in Chapter 3 and 4.
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Linear support vector machine Introduced for binary classification (i.e., Y = {−1, 1}),
the linear support vector machine (SVM) is a well-established RERM algorithm that dates
back from the 1990s [Boser et al., 1992]. It consists in learning a classifier based on a linear
regression model hw,b(x) = b+w1x1+. . .+wdxd withW ⊆ Rd, that outputs 1 if hw,b(x) ≥ 0
and −1 otherwise. The loss function is the hinge loss, i.e., l(h(x), y) = max{0, 1−h(x)y}
and the regularization function is taken as r(w) = 1

2∥w∥
2
2. Note that the squared ℓ2-norm

is used for simplifying the optimization by eliminating the square root (as the function
f : x→ x2 is strictly increasing minima are preserved). Finally, introducing positive slack
variables ϵℓ = max{0, 1− h(xℓ)yℓ} modeling the error on data point (xℓ, yℓ), ℓ = 1, . . . , t,
the resulting RERM optimization problem reads as follows:

min
w∈Rd,b∈R

1
t

t∑
ℓ=1

ϵℓ + λ

2∥w∥
2
2 (1.10)

yℓ(w⊤xℓ + b) ≥ 1− ϵℓ, ℓ = 1, . . . , t
ϵℓ ≥ 0, ℓ = 1, . . . , t

Intuitively, minimizing the hinge loss amounts to finding w such that most of the
positive examples (xℓ,+1) are above the hyperplane w⊤x+b = 1 and most of the negative
examples (xℓ,−1) are below the hyperplane w⊤x+ b = −1. Here, the hinge loss is mini-
mized conjointly with an ℓ2-regularization term which allows controlling the complexity
of the learned model by pushing the coefficients towards small values and thus limiting
the model sensitivity. The regularization term here has a particular graphical interpreta-
tion since r(w) is inversely proportional to the margin, that is the space in between the
two hyperplanes w⊤x + b = 1 and w⊤x + b = −1, as it is illustrated in Figure 1.8 for
d = 2. Indeed, let x be a point on the decision boundary w⊤x+ b = 0, the distance from
x to the hyperplane w⊤x+ b = +1 is the real value γ+ ∈ R+ such that w⊤(γ+w+x) = 1,
i.e., γ+ = 1/∥w∥2. Summing up with the distance to the negative border w⊤x+ b = −1,
the margin, denoted by γ, equals 2/∥w∥2.

Therefore SVM finds the maximum margin separating hyperplane. In the next
section, we present sparsity-inducing regularization functions, embodied by the ℓ1-norm,
that reduce model complexity by shrinking coefficients towards zero and thus provide
sparse coefficients vectors.

3.1.3 Sparsity-inducing Regularization

A sparsity-inducing regularization [Tibshirani, 1996, Bach et al., 2012] refers to a
regularization function that favors sparse model parameters (i.e., with a large proportion
of zero components). Compared to other regularizations such as the ℓ2-norm, they have
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w⊤x + b = 0
w⊤x + b = 1
w⊤x + b = −1
positive examples
negative examples

Figure 1.8: ℓ2-regularized hinge loss (SVM) as a maximum margin optimization problem.

the added benefit of allowing the selection of the most important parameters, thus en-
hancing model interpretability. A first straightforward example of such sparsity-inducing
regularization function is the number of non-null coefficients, called ℓ0-norm by abuse of
language, and denoted by ∥w∥0. However, it can easily be checked that this regularization
function is non-convex and discontinuous, making its minimization very difficult from a
computational point of view.

Therefore, it is common to resort to the continuous and convex, but non-smooth,
ℓ1-norm regularization (∥w∥1 = ∑d

i=1|wi|). Indeed, as we illustrate it in the sequel, the
convex and non-smooth nature of the ℓ1-norm allows encouraging sparse solutions. Note
that non-smooth is understood here as non-differentiable, i.e., there exist points where
the gradient does not exist2. The property of subdifferentiability, that we briefly introduce
below, generalizes differentiability for non-differentiable convex functions, and is a useful
tool for their optimization:

Definition 1.27 (subdifferentiability and subgradients). A convex function f : Rd →
R is subdifferentiable at w ∈ domf if there exists u ∈ Rd such that for any z ∈ domf, f(z) ≥
u⊤(z−w) + f(w). Any vector u verifying the latter inequality is a subgradient of f at w.
The set of all subgradients of f at w, denoted by ∂f(w), is called the subdifferential of f
at w. Finally, f is said subdifferentiable if it is subdifferentiable at any w ∈ domf .

Remark 1.6. If f is convex, f is differentiable at w ∈ domf iff ∂f(w) = {∇f(w)}, where
∇f(w) denotes the gradient of f at w. For more in-depth results and proofs see [Bauschke

2For d = 1, this means that f(w+h)−f(w)
h does not admit a limit when h → 0. A similar formulation

of non-differentiability exists for d > 1 (see [Bauschke and Combettes, 2011], Chapter 17).
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and Combettes, 2011].

The convex univariate absolute value function f : w → |w| upon which is built the
ℓ1-norm, while not being differentiable at w = 0, is subdifferentiable. Indeed, as it can
be graphically observed on Figure 1.9, the univariate absolute value function admits the
following subdifferential:

∂f(w) =


{1} if w > 0

[1,−1] if w = 0

{−1} if w < 0

(1.11)

Then, the absolute value function non-smoothness at w = 0 is embodied by an
infinite number of subgradients and a kink in the curve. This kink then gives rise to
angularities at points with zero coefficients in the landscape of ℓ1-norm regularized objec-
tive functions, which, during optimization, favors solutions with exactly zero coefficients.
A pioneering and emblematic example of ℓ1-regularized RERM problem is the LASSO
regression [Tibshirani, 1996], that we present in the following. Before that, we give a
necessary and sufficient optimality condition for any convex function f : Rd → R that
directly follows from the definition of the subdifferential (see Definition 1.27):

w∗ ∈ arg min
w∈Rd

f(w)⇐⇒ 0 ∈ ∂f(w∗) (1.12)

w

|w|
uw, u ∈ [−1, 1]

0

1

1 1

Figure 1.9: The absolute value function : x→ |w| and some affine minorants at w = 0.

LASSO Regression LASSO (Least Absolute Shrinkage and Selection Operator) [Tib-
shirani, 1996, Hastie et al., 2015a] is a ℓ1-regularized least square linear regression, i.e,
a RERM problem with regression examples (i.e, Y = R), linear models (i.e., hw,b(x) =
b+w1x1 + . . .+wdxd), squared loss (i.e., l(h(x), y) = 1

2(h(x)− y)2) and ℓ1 regularization
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(i.e, r(w) = ∥w∥1). Hence, it consists of solving the following optimization problem:

min
w∈Rn,b∈R

1
2t

t∑
ℓ=1

((w⊤xℓ + b)− yℓ)2 + λ∥w∥1 (1.13)

To illustrate how ℓ1-norm’s non-differentiability yields sparse solutions for Problem
1.13, we examine the toy example of a one-dimensional LASSO regression.

Example 1.10. Consider a one-dimensional linear model without intercept, i.e., hw(x1) =
w1x1. Also, let us denote X = (xℓ)tℓ=1 and Y = (yℓ)tℓ=1 the vectors containing the input
and label data respectively, where input data is assumed to have been priorly standardized,
i.e., XTX = 1. Then, Problem 1.13 boils down to minimizing

f(w1) = 1
2t∥Y − w1X∥2

2 + λ|w1| (1.14)

whose subdifferential corresponds to {1
t
(Y −w1X)XT +λs|s ∈ λ∂|.|(w1)}, for any w1 ∈ R.

In Example 1.10, combining optimality Condition 1.12 and the definition of ∂|.|(w1)
(see Equation 1.11), we obtain the following optimality condition:

w∗
1 ∈ arg min

w∈R
f(w1)⇐⇒


−1
λt

(Y − w∗
1X)X⊤ = 1 if w∗

1 > 0
−1
λt

(Y − w∗
1X)X⊤ ∈ [1,−1] if w∗

1 = 0
−1
λt

(Y − w∗
1X)X⊤ = −1 if w∗

1 < 0

Since XXT = 1, by multiplying the right-hand equations by XT , we finally obtain the
following closed-form solution for Problem 1.13:

w∗
1 = sign

(
Y XT

t

)[ |Y XT |
t
− λ

]
+

(1.15)

Hence, once the regularization hyperparameter exceeds the threshold λlim = |Y XT |
t

, w1 is
set to zero.

This behavior can be compared to that of ridge regression [Hoerl and Kennard,
1970] which employs squared ℓ2-regularization instead of ℓ1-regularization. The ridge
regression objective function thus reads as g(w1) = 1

2t∥Y − w1X∥2
2 + λ

2∥w2∥2
2. As g is

differentiable with g′(w1) = 1
t
(Y − w1X)XT + λw1, ridge regression admits the closed-

form solution w∗
1 = Y X⊤

t(1+λ) . Consequently, coefficient w1 is not set to zero at any given
time, but pushed towards zero while λ increases.

As an illustration, the LASSO objective function f (see Equation 1.14) computed
with three learning examples given by X = (0.48, 0.66, 0.58) and Y = (0.43, 0.63, 0.71)
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is represented in Figure 1.10 (top) for increasing values of λ. An angularity in the curve
of the objective function can be seen at w1 = 0 on all graphs, and as λ increases, this
sharp angle quickly attracts the minimum of the objective function. We indeed recover
the fact that for λ ≥ λlim = 0.34, w1 = 0 is the optimal solution. In contrast, Figure
1.10 (bottom) that represents the objective function of the ridge regression, shows that
the optimal solution of the ridge regression converges towards zero as λ increases without
ever hitting exactly zero.
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Figure 1.10: LASSO (top) and ridge (bottom) objective functions for increasing λ values.

Other examples of sparsity-inducing regularization functions are mixed norms such
as the elastic-net [Zou and Hastie, 2005], that combines ℓ1 and ℓ2 regularization and thus
reads as: r(w) = λ∥w∥1 + β∥w∥2

2. Also, ℓ1-group norm [Roth and Fischer, 2008, Huang
and Zhang, 2010] are used to select parameters according to a group structure, i.e., coeffi-
cients belonging to a given group are put to zero all together. For instance, given a set of
groups G, a standard choice is r(w) = ∑

S∈G∥wS∥2, where wS is the restriction of w to the
components in S. Similarly to the ℓ1-norm, these regularization functions admit points of
non-differentiability, allowing to encourage sparse solutions in the optimization process.
A more in-depth analysis of this class of regularization functions is available in [Bach
et al., 2012]. Finally, we can also mention other ℓ1-norm-based penalties that encourage
solutions with interesting properties, such as integer-valued coefficients [Belahcene et al.,
2020] or uniform coefficients (with few distinct values) [Tibshirani et al., 2005].
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3.1.4 Convex Optimization Algorithms

As previously discussed, the formulation of a supervised learning problem typi-
cally involves selecting a hypothesis class (model), a loss function, and a regularization
function, thereby forming a RERM problem, which we assume to be convex here. The
learning algorithm then consists of training the model, i.e., solving the RERM problem.

In the following, we provide a brief overview of standard optimization methods used
for solving convex optimization problems, with a particular focus on RERM problems. To
this end, we borrow from the books [Bubeck et al., 2015, Nesterov et al., 2018] the clari-
fying distinction between first and second order black-box convex optimization algorithms
that solely rely on gradient and hessian information, and structural convex optimization
algorithms, which additionally exploit the specific structure of the optimization problem,
such as the analytical form of the objective function (e.g., linear or quadratic). For a
more in-depth discussion on convex optimization algorithms, we refer the reader to these
books, as well as to [Bertsekas, 2015] and [Sra et al., 2011] for machine learning-specific
perspectives.

The optimization problem under consideration is therefore of the following form:

min
w∈W

f(w) := R(w) + λr(w) = 1
t

t∑
ℓ=1

l(hw(xℓ), yℓ) + λr(w) (1.16)

where f,R, r are convex functions and W is a convex set.

Black-box first and second-order convex optimization methods

In this section, we present iterative optimization procedures that start with an
initial solution w0 and use at each iteration k the information of the gradient at the cur-
rent solution ∇f(wk) (first-order methods) and possibly of the Hessian matrix ∇2f(wk)
(second-order methods) to improve the solution. Thus, unless specified, f is assumed to
be twice differentiable, and with L-Lipschitz gradients, i.e., such that for any w, v ∈ Rd

∥∇f(w)−∇f(v)∥2 ≤ L∥w− v∥2 (except when specified, W is identified to Rd). Finally,
the different methods are compared in terms of the convergence rate of the objective
function, i.e., a method is said to have a convergence rate in O(g(k)) when the difference
f(wk)− f(w∗) is in O(g(k)).

First-order algorithms The basic first-order algorithm is the gradient-descent algo-
rithm [Cauchy et al., 1847, Nocedal and Wright, 1999], which updates the current solution
as follows:

wk = wk − ηk∇f(wk) (1.17)
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where ηk ∈ R∗
+ is referred to as the step-size or learning rate. This iterative procedure

is known to admit a convergence rate in O( 1
k
), which can be improved to O( 1

k2 ) using
a variation of the algorithm referred to as the Nesterov’s accelerated gradient-descent
[Nesterov, 1983]. When f is strongly convex the convergence rate is in O(Ck), C ∈ [0, 1].
Also, it is important to note that when f is only sub-differentiable (and thus ∇f(wk)
is replaced with a subgradient sk ∈ ∂f(wk)), the convergence is much slower as it is in
O( 1√

k
) [Nesterov et al., 2018].
As f is here the objective function of the RERM Problem 1.16, the computation of

gradient ∇f(wk) requires computing the gradient of the loss l(hw(xℓ), yℓ) for any example
xℓ, yℓ yielding a computational cost in O(dt) at each iteration. In the context of large-
scale problems (a large number of variables d or a large number of training examples t)
[Bennett and Parrado-Hernández, 2006, Bottou and Bousquet, 2007], such a computation
may be prohibitive. Thus, alternatives to gradient descent have been proposed to alleviate
the computational cost of gradient computing. Among them, stochastic gradient-descent
(SGD) [Bottou, 2010] or online gradient-descent (OGD) [Shalev-Shwartz, 2012] are par-
ticularly computationally efficient because, at each iteration, they compute the gradient
of the loss attached to a single example (randomly drawn in the case of SGD and lastly
received in an online streaming in the case of OGD). The context of online learning has
led to a distinct body of literature focusing on two optimization paradigms: online mirror
descent (OMD) methods [Beck and Teboulle, 2003] (of which OGD is a special case) and
follow-the-regularized-leader [Shalev-Shwartz, 2007, 2012] (also known as regularized dual
averaging (RDA) [Xiao, 2009] for ℓ1-regularized loss), both of which will be presented in
more details in Chapter 6, which addresses the online learning of preference models.

When Problem 1.16 is constrained, i.e., W ̸= Rd, the scheme given by Equation 1.17
can be extended to projected gradient-descent, where at each iteration the updated point
wk is projected back onto the feasible set. We can also mention the conditional gradient-
descent (also known as the Frank-Wolfe algorithm) [Frank et al., 1956, Jaggi, 2013] that
does not rely on projections but rather linearizes f at the current solution at each iteration
and performs linear programming (LP) over W , yielding a low computational complexity
per iteration when LP over W reduces to a simple problem.

Second-order algorithms Compared to first-order optimization methods, second-order
methods offer faster convergence due to the inclusion of curvature information carried by
the Hessian matrix ∇2f(wk). The basic second-order algorithm is the Newton’s method
[Kantorovich, 1949, Nocedal and Wright, 1999], which updates the current solution as
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follows:

wk+1 = wk −
[
∇2f

(
wk
)]−1

∇f
(
wk
)

(1.18)

When the algorithm is initialized with a starting point w0 sufficiently close to the
optimal solution w∗ of Problem 1.16, and f is strongly convex, it converges to a solution
satisfying f(w∗)− f(wk) ≤ ϵ in O(log(log(1/ϵ))) iterations, achieving faster convergence
than gradient descent-based methods (see, for instance, Chapter 1 of [Nesterov et al.,
2018]). However, storing the Hessian matrix and performing operations on it (notably
inversion) pose computational challenges. These difficulties can be addressed using a
quasi-Newton method, where the Hessian matrix is not explicitly computed but approx-
imated [Goldfarb, 1970, Nocedal, 1980]. Similarly to gradient descent, stochastic and
online variants of quasi-Newton methods have been proposed to handle large-scale learn-
ing problems [Schraudolph et al., 2007, Byrd et al., 2016, Sun et al., 2019].

Structural convex optimization methods

We now discuss optimization methods that leverage the specific structure of Prob-
lem 1.16, to achieve faster convergence (potentially with a higher computational cost per
iteration).

Optimization methods for sparsity-inducing regularization In the context of
sparse learning for instance, there is a focus on optimization methods specifically suited
for the case where r(w) is a sparsity-inducing penalty such as the ℓ1-norm. Complete
descriptions of such methods can be found in [Bach et al., 2012] or [Hastie et al., 2015b].
Among them, proximal methods leverage the division of the objective function in a dif-
ferentiable part (the loss, i.e., R(w) in Problem 1.16) and a non-differentiable part (the
sparsity-inducing penalty, i.e., r(w) in Problem 1.16). More precisely, at each iteration
R(w) is linearized around the current solution using its gradient and a proximal term is
added to maintain the next solution in a neighborhood of the current solution, i.e., for
some L > 0:

wk+1 = arg min
w∈Rd

R(wk) +∇R(wk)⊤(w − wk) + λr(w) + L

2
∥∥∥w − wk∥∥∥2

2
(1.19)

Such algorithm is known to admit a convergence rate in O( 1
k
), which can be

improved to O( 1
k2 ) using a variant that is referred to as the fast iterative shrinkage-

thresholding (FISTA) algorithm [Beck and Teboulle, 2009]. Thus, it provides faster
convergence than gradient-descent with non-differentiable functions. This is obtained
without increasing the computational cost of each iteration, as for instance when r is
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the ℓ1-norm, Problem 1.19 admits a closed-form solution that can be computed in O(dt).
Chapter 6 will revisit this type of optimization method in the context of online learning
for preference models. Notably, the proof of the closed-form solution of Problem 1.19 for
the ℓ1-norm is given in Lemma 2 of the Appendix C).

An alternative type of method, referred to as coordinate descent methods, exploit
the additive decomposition of the ℓ1 regularization (which is the sum of the variables’s
absolute values), and optimize w.r.t. one variable only at each iteration [Wu and Lange,
2008, Friedman et al., 2010]. Finally, ℓ1-regularized loss functions can be minimized
using iteratively re-weighted least squares (IRLS) methods that leverage links between
ℓ1-regularization and l2-regularization to solve a sequence of l2-regularized problems
[Daubechies et al., 2010]. Further details are provided in Chapter 3, where this type
of optimization method will be studied for learning preference models.

Alternating direction method of multipliers (ADMM) When the model param-
eter are constrained, i.e., W ̸= Rd, the computational efficiency of the previous methods
might be lost. A widely-used approach to circumvent this issue is to use alternating direc-
tion method of multipliers (ADMM) methods [Glowinski and Marroco, 1975, Boyd et al.,
2011] that exploit constraint structure to break down complex optimization problems into
smaller subproblems, reducing computational complexity. A presentation of this method
is given in Chapter 6, where it is explored for learning preference models with constraints
on the parameters, in the online setting.

Interior-point methods (IPM) Alternatively, Problem 1.16 can sometimes be clas-
sified into typical problem categories, such as linear programming (LP) (linear objective
and linear constraints), quadratic programming (QP) (quadratic objective and linear con-
straints) second-order cone programming (SOCP) (linear objective and second-order cone
constraints [Lobo et al., 1998] which includes quadratically constrained quadratic program
(QCQP)), or semi-definite programming (SDP) (linear objective and affine combination
of symmetric matrices constrained to be positive semi-definite [Vandenberghe and Boyd,
1996]). For instance, the LASSO regression and SVM optimization problems (Problem
(1.13) and Problem (1.10)) can be formulated as QP problems.

LP, QP, SOCP, and SDP problems can be solved with high precision by standard
numerical solvers that use interior points methods (IPM) (or active-set methods that we
describe in the next paragraph). As such solvers are used in this thesis to perform LP,
QP, and QCQP optimization tasks (see Chapter 2-4), we give a brief description of IPM
below.

IPM, originally proposed for LP [Karmarkar, 1984, Renegar, 1988] (see [Nesterov
and Nemirovskii, 1994] for a summary of historical contributions), works by starting
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from a point inside the feasible region and iterating towards the optimal solution, using
a barrier function that maintains the iterate within the feasible region. More precisely,
it starts with the following reformulation of Problem 1.16:

min c⊤v (1.20)
s.t. v ∈ V

where (c, v) ∈ Rd+1 and V ⊆ Rd+1 is a convex set3.
Then, IPM leverages a barrier function, i.e., a smooth and strongly convex function

B : int(V)→ R such that B(v) −−−−−→
v→Fr(V)

+∞, where Fr(V) is the frontier of V and int(V)
its interior. Then, the following approximating problem is considered for any t > 0:

minFt(v) = tc⊤v +B(v) (1.21)

Under mild assumptions, the sequence of solutions v(t) ∈ int(V) obtained by solving
Problem 1.21 with increasing values of t is such that v(t) −−−→

t→∞
v∗, where v∗ is the optimal

solution of Problem 1.20 [Nemirovski and Todd, 2008, Nesterov et al., 2018]. Rapid
convergence can be guaranteed by solving Problem 1.21 for a sequence of increasing
values ti, where at each iteration a Newton’s algorithm (see Equation 1.18) is launched
with an initial solution taken as the previous solution w(ti−1). However, this requires
having a barrier function B whose gradient and Hessian matrix are well-defined and easily
computable. This is the case for instance for LP, i.e., when V = {v ∈ Rd+1|aiv − bi ≤
0, i = 1, . . . ,m}. In this case, using the logarithmic-barrier B(v) = −∑m

i=1 log
(
a⊤
i v − bi

)
,

it is known that the IPM algorithm admits a convergence rate in O(m exp −k√
m

) (see for
instance [Nesterov et al., 2018, Bubeck et al., 2015] both in Chapter 5). Note that this
rate depends on m the number of constraints, and furthermore, each iteration requires
performing Newton’s steps. Thus, such an optimization method can be prohibitive when
the number of variables d or constraints m is large.

Active-set methods Standard numerical solvers also widely rely on active-set meth-
ods. These methods, which include the simplex algorithm [Dantzig, 1951] for LP, work
by iteratively selecting a set of inequality constraints potentially active (i.e., for which
equality holds) at the optimum, and solving a smaller optimization problem only using
these constraints. This principle has also been used in machine learning to solve large-
scale learning problems, notably for solving SVM (see Problem 1.10) with a large number
of examples, using the sequential minimal optimization (SMO) algorithm [Platt, 1998,
Fan et al., 2005].

3it can easily be checked that Problem 1.16 is equivalent to min(t,w)∈R×W s.t. t≥f(w) t

47



Chapter 1. Preference Modeling and Preference Learning

3.2 Learning Preference Models

3.2.1 Preference Learning Singularities and Challenges

Designing supervised learning algorithms for the preference models introduced in
Section 1 requires taking into account the specific structure of preference data and models.

Training data As it is standard in preference elicitation (see Section 2), preference
information may be available in the form of utility values (ratings/global evaluations) or
rankings of alternatives, the latter being described by the vector of their consequences
x = (x1, . . . , xn) w.r.t. n viewpoints (where xi may directly represents the marginal
utility w.r.t. the ith viewpoint; see Section 1).

In the case where preference information is available in the form of utility values,
the learning task boils down to a regression task where the targets yℓ, ℓ = 1, . . . , t are
the alternatives’ utilities. When the utility information is ordinal, i.e., yℓ ∈ {1, . . . , K},
it forms a multi-class classification problem with ordered class labels (also known as
ordinal regression). A simple example is the classification of scientific papers in the
ordinal categories {1 : reject, 2 : weak reject, 3 : weak accept, 4 : accept}. This case
is also known as multipartite ranking (or bipartite when K = 2). However, utility
numerical information is considered difficult to obtain from the DM, who may not be
able to quantify the intrinsic utility of an alternative. On the other hand, preference
information in the form of pairwise comparisons (rankings of pairs) such as xℓ ≿ x′ℓ

(alternative xℓ is preferred to alternative x′ℓ), is considered easier to acquire. Therefore,
the training dataset is often encountered as a collection of pairwise preference examples
D = {(xℓ, x′ℓ)}tℓ=1, where xℓ ≿ x′ℓ for instance. Note that rankings of more than two
alternatives could also be considered.

These preference databases can be derived from individual questionnaires, as is
traditionally the case in preference elicitation, but they can also be collected from the
observation of behavior on the web (e.g., search engines, social medias, streaming plat-
forms). For instance, one can think of restaurant/movie choices or ratings, or evaluations
of answers provided by an AI-powered chatbot. A standard reference for preference data
is the website https://preflib.simonrey.fr/.

Remark 1.7 (preference learning as binary classification). Preference learning from pair-
wise comparisons can be viewed as a binary classification task with an antisymmetric
classifier H(x, x′) = sign(h(x) − h(x′)), h : Rn → R, where the inputs are of the form
(xℓ, x′ℓ) associated with the label +1 when xℓ ≻ x′ℓ and -1 otherwise.
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Loss function The employed loss function naturally has to be tailored to the preference
data structure. When overall evaluations of alternatives are available, standard regression
loss functions such as the squared or the absolute loss are perfectly suitable. When
training data are available in the form of pairwise preference examples, the loss function
is designed to penalize preference violations. Violations can be measured in a binary
manner, i.e., we can define a loss function l : R × R → R such that for any preference
example x ≻ x′, and any utility function h : Rn → R:

l(h(x), h(x′)) =

1 if h(x′) ≥ h(x),

0 otherwise.

Note that it corresponds to the 0-1 loss for the binary classifierH(x, x′) = sign(h(x)−
h(x′)) (see Remark 1.7). As such loss is non-convex and discontinuous, it is very chal-
lenging to optimize. Then, it is common to resort to the continuous and convex following
loss, penalizing preference violation intensity:

l(h(x), h(x′)) =

δ − (h(x)− h(x′)) if h(x′) ≥ h(x)− δ,

0 otherwise.

where δ ≥ 0 is a threshold used to separate strict preference from indifference situations.
Note that this loss corresponds to the hinge loss (for δ = 1) for the binary classifier
H(x, x′) = sign(h(x)−h(x′)) (see Remark 1.7). Generalizing this idea to handle preference
and indifference examples, we can define the following convex loss, referred to as the pref-
hinge loss in this manuscript:

Definition 1.28 (pref-hinge loss). Let P and I be the set of indices of the examples of
preference and indifference respectively. The pref-hinge loss is a function l : R× R→ R
such that for any utility function h : Rn → R, δ ≥ 0, and any example (xℓ, x′ℓ):

l(h(xℓ), h(x′ℓ)) =

max{0, δ − (h(xℓ)− h(x′ℓ))} if ℓ ∈ P

max{0, δ − |h(xℓ)− h(x′ℓ)|} if ℓ ∈ I

Remark 1.8 (semi-orders). Parameter δ conveys the idea that the observed preferences
do not necessarily form a weak order ≿ (i.e., such that there exists a utility function h

satisfying h(x) > h(x′) iff x ≻ x′ and h(x) > h(x′) iff x ∼ x′; see Remark 1.1). Preferences
may indeed form a semi-order [Luce, 1956, Pirlot and Vincke, 2013], characterized by the
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existence of a utility function h and an indifference threshold δ ≥ 0 such that:

x ≻ x′ ⇐⇒ h(x) > h(x′) + δ

x ∼ x′ ⇐⇒ |h(x)− h(x′)| ≤ δ

Challenges of learning decision-theoretic preference models with interactions
As discussed in Section 1, preference models with interactions from decision theory (e.g.,
totally decomposable models with capacity-based aggregation functions, GAI-decomposable
utility functions) make it possible to capture complex preference behaviors, notably over-
coming the descriptive limitations of additive utility models. However, this descriptive
power is achieved using a large number of parameters: one capacity weight w(S) for each
possible subset of interacting viewpoints S ⊆ N in models based on a capacity w, or one
sub-utility factor uS for any S ⊆ N for GAI-decomposable utility functions.

Moreover, while demonstrating strong descriptive power, these models satisfy math-
ematical properties that ensure some consistency and rationality in preferences. For
instance, totally decomposable models are monotonic (see Definition 1.6) and thus guar-
antee that an alternative that is at least as good as another from every point of view
cannot be judged less attractive overall. Another example is the fact the Choquet inte-
gral with a supermodular capacity (see Definition 1.13) allows modeling the preference
for balanced solutions in contexts where fairness is desirable (see Example 1.5, or more
generally [Lesca and Perny, 2010]). However, these desirable behaviors are guaranteed
through combinatorial sets of structural constraints (i.e., monotonicity w.r.t. set inclusion
and supermodularity) on the capacity.

Therefore, specific optimization methods able to handle such a number of param-
eters and constraints are needed to solve the learning problems. Additionally, the expo-
nential number of coefficients defining the capacity entails a high risk of overfitting the
training data that has to be controlled through regularization. Due to their ability to
select important parameters, sparsity-inducing regularizations emerge as promising can-
didates for controlling capacities’ flexibility and obtaining a clear representation of the
most significant interactions between viewpoints. Therefore, the computational difficul-
ties due to the large number of constraints and parameters are combined with the need
for sparsity, which requires resorting to optimization techniques capable of exploiting the
particular structure of large-scale ℓ1-regularized RERM problems.

Among the totally decomposable models with capacity-based aggregation functions
presented in Section 1, this thesis primarily focuses on the Choquet integral and the
multilinear utility. These models, as shown by Equation 1.5 and Equation 1.9, have
the advantage of being linear in the capacity, when the marginal utilities are known.
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As a consequence, the learning of these models can generally be formulated as linear
or quadratic optimization problems, depending on the selected loss and regularization
functions. Indeed let us take hw := Cw or hw := MLw, and w ∈ W where W is the set
of capacity. Thus, a RERM problem for learning w with a set of preference examples
D = {(xℓ, x′ℓ)}tℓ=1, where xℓ ≿ x′ℓ, the pref-hinge loss and a regularization function
r : W → R, reads as:

min
w∈W

1
t

t∑
ℓ=1

l(hw(xℓ), hw(x′ℓ)) + λr(w)

:= min
w∈R2n−1

1
t

t∑
ℓ=1

ϵℓ + λr(w)

s.t. hw(xℓ)− hw(x′ℓ) + ϵℓ ≥ δ, ℓ = 1, . . . , t
w(S) ≥ w(T ), S ⊆ T, T, S ⊆ N (1.22)
w(N) = 1 (1.23)
ϵℓ ≥ 0, ℓ = 1, . . . , t

where the second formulation is obtained by introducing positive error variables ϵℓ =
max{0, δ− (h(xℓ) − h(x′ℓ))} and by making explicit the constraints that define the
set of capacities, namely the normalization (Constraint 1.23) and monotonicity (Con-
straint 1.22) constraints. Thus, by linearity of hw w.r.t. w, such optimization problem
falls into linear programming when r is the ℓ1-norm (provided r is linearized; see Re-
mark 2.2 in Chapter 2 for details on how the ℓ1-norm can be linearized), and quadratic
programming when r is the ℓ2-norm. The optimization approaches developed in this
thesis to solve the RERM problem make use of this particular property, and are thus, in
general, not suitable for models that are non-linear in the capacity, such as the Sugeno
integral (see Definition 1.17)

3.2.2 Existing Approaches for Learning Decision-theoretic Preference Models
with Interactions

Totally decomposable utility functions introduced in Section 1, and in particular
Choquet integrals, have been the focus of many contributions in preference learning, thus
complementing the preference elicitation methods already presented in Section 2.2.2. A
first approach was proposed for learning binary classifiers based on Choquet and Sugeno
integrals [Grabisch and Nicolas, 1994]. Then, ordinal regression with the Choquet integral
was formulated as the minimization of the pref-hinge loss over all possible pairs of alterna-
tives included in the training set [Tehrani et al., 2012c]. Alternatively, ordinal regression
with the Choquet integral can be addressed by extending logistic regression (a RERM
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problem based on a linear classifier and the logistic loss). Such extension is referred to as
the ordinal Choquistic regression [Tehrani et al., 2012a, Tehrani and Hüllermeier, 2013].
The RERM learning problems presented in Section 3 such as SVM and ridge regres-
sion can be similarly extended for learning Choquet integrals in the binary classification
[Tehrani, 2021] and regression setting [Kakula et al., 2020a]. Also, an efficient algorithm
for learning Choquet integrals in the regression setting has been proposed [Beliakov and
Wu, 2019b]. It is based on the concept of k-interactivity which, like k-additivity, reduces
the number of variables defining the capacity, but also reduces the number of mono-
tonicity constraints. Finally, we can mention some contributions on the learning of the
multilinear model [Pelegrina et al., 2020a] and the Sugeno integral [Gagolewski et al.,
2019a, Abbaszadeh and Hüllermeier, 2020, Beliakov et al., 2020]. As the Sugeno integral
is not linear in the capacity, optimization methods for solving learning problems usually
differ from the ones used for learning Choquet integral or multilinear models, and use for
instance heuristics such as genetic algorithms [Combarro and Miranda, 2006].

The above contributions solely address the issue of learning the capacity parametriz-
ing the Choquet integral, the multilinear model or the Sugeno integral, assuming that
marginal utilities are known. Other contributions tackle the problem of learning both
types of parameters simultaneously. Beyond the methods proposed in the preference elic-
itation literature (see Remark 1.5), we can mention the Choquistic utilitarian regression
[Tehrani et al., 2014a], which extends Choquistic regression by modeling marginal utility
functions as linear combinations of sigmoid functions. This same model for marginal util-
ities is used within a neural architecture for learning hierarchical Choquet integrals (i.e.,
extensions of the Choquet integral that rely on a hierarchy of viewpoints and aggregate
marginal utilities using a distinct Choquet integral at each level of the hierarchy) [Bresson
et al., 2021, Bresson, 2022]. This Choquet-based neural architecture has been leveraged
for providing a post-hoc explanation of a deep neural network [Atienza et al., 2024].

All the above-mentioned contributions alleviate the computational difficulty of
learning capacity-based aggregation functions by resorting in practice to prior reduc-
tions of the parameter space using k-additive capacities [Tehrani et al., 2012c, 2014a,
Pelegrina et al., 2020a] (or similar restrictions such as k-interactive capacities [Beliakov
and Wu, 2019b]), relaxing monotonicity constraints [Tehrani, 2021, Kakula et al., 2020a]
or using hierarchical Choquet integral with predefined hierarchy [Bresson et al., 2021,
Atienza et al., 2024]. Note that k-additivity can also be seen as a way to control the
model’s flexibility and thus prevent overfitting.

On the other hand, several attempts to control the complexity of the capacity
using sparsity-inducing regularizations have been made. For instance, the ℓ1-penalty was
applied to the capacity [Anderson et al., 2014, Adeyeba et al., 2015, Kakula et al., 2020b]
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and the ℓ0-penalty on the Shapley values (aggregation of Möbius masses reflecting the
overall importance of each viewpoint) is considered in [Pinar et al., 2017]. The ℓ1-penalty
was also applied to the interaction indices representation [de Oliveira et al., 2022]. Thus,
it appears that the choice of the capacity representation on which sparse regularization
should be applied is not straightforward. Notably, the Möbius representation seems to
have been little exploited for learning sparse representations of capacities, although it is
particularly suitable, as will be highlighted in Chapter 2 of this thesis. Moreover, the
computational challenge arising from the relaxation of k-additivity constraints is not truly
addressed, as the methods are tested on small-scale problems. (less than 5 viewpoints)
[Anderson et al., 2014, Adeyeba et al., 2015, Pinar et al., 2017, de Oliveira et al., 2022].
While [Kakula et al., 2020b] partially addresses the computational challenge by using
online gradient descent to solve the learning problem, it does not guarantee monotonicity
of the learned preference models.

Concerning the learning of GAI utility functions, as far as we know, beyond the
elicitation procedures mentioned in Section 2.3, only one contribution [Bigot et al., 2012]
has been proposed in the preference learning literature. This approach allows learning
simultaneously the decomposition and the sub-utility functions. However, it is formulated
for Boolean attributes and interactions are limited to subsets of bounded size k (k = 2
is used in practice) in the spirit of k-additivity. Hence, as with totally decomposable
models, there is a necessity to develop computationally efficient learning techniques that
yield simple decomposition with few factors, without enforcing prior restrictions on the
size of interactions.

4 Conclusion

In this chapter, we first introduced key examples of preference models based on a
utility function that assigns an overall value to each alternative. In particular, we intro-
duced two classes of decomposable utility functions of increasing generality: totally and
GAI-decomposable utility functions. In the first class, utility functions decompose into a
set of marginal utility functions defined for each viewpoint, and an aggregation function
that combines these marginal utilities into an overall value using information regarding
the importance of viewpoints or groups of viewpoints. Such information can be encoded
into a capacity that assigns a weight to any viewpoint group, possibly taking into account
interaction effects within the groups. We have seen that taking into account these in-
teractions between viewpoints through capacity-based aggregation functions, such as the
Choquet integral or the multilinear model, makes it possible to overcome the descriptive
limitations of the weighted sum and allows for modeling sophisticated decision-making be-
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haviors. Both the Choquet integral and the multilinear model belong to the broader class
of GAI-decomposable utility functions, which additively decompose into sub-utility func-
tions generalizing the viewpoints’ marginal utilities to groups of interacting viewpoints.
Overall, totally and GAI-decomposable utility functions, while allowing for decomposi-
tion and therefore simple preference representations, enable the modeling of complex but
natural preferences, particularly by accounting for interactions between viewpoints.

In the second section, we provided a brief overview of preference elicitation meth-
ods aimed at determining the parameters of these utility functions in close collaboration
with the DM using questionnaires. We distinguished between two main approaches:
decision-focused elicitation methods that use the smallest number of queries possible to
obtain sufficient information on the parameters to solve a given decision problem, and
approaches aimed at determining a specific parameterization that accurately represents
the decision maker’s preferences, generally using larger databases of preference examples.
The latter type of approach naturally leads to preference learning which we introduced
in the third section from the perspective of supervised learning, a general framework for
learning models’ parameters using labeled examples. To address the learning task, one
major approach is to minimize a loss function that measures how well the model fits
the examples and employing a regularization function to avoid overfitting and promote
simpler models. Regularization functions of interest include sparsity-inducing regulariza-
tions, as they allow for the selection of important parameters and improve the model’s
interpretability. Then, convex optimization algorithms can be leveraged to solve the regu-
larized learning problem. This general framework can be specified for preference learning
using loss functions measuring preference violations on databases of preference examples,
which typically take the form of pairwise comparison examples.

Preference learning has been widely used to learn decomposable utility functions.
However, the proposed approaches do not overcome the limitations of the preference elic-
itation methods outlined at the end of Section 2. In particular, there remains a need for
methods capable of learning sparse representations of preferences in a computationally
efficient manner, without relying on cardinal-based prior restrictions such as k-additivity
or on relaxations of the constraints that ensure the rationality of preferences (e.g., mono-
tonicity of the preference model).

The aim of this thesis is to further explore the preference learning framework to
develop computationally efficient algorithms for obtaining simple and interpretable pref-
erence representations with totally and GAI-decomposable utility functions. In particu-
lar, we aim to formulate learning problems within the RERM framework with sparsity-
inducing regularization and to design computationally efficient optimization algorithms
to solve these problems, leveraging the extensive literature on optimization for regular-
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ized, constrained, and large-scale learning problems. Furthermore, in doing so, we seek to
provide the machine learning community with theoretically grounded and interpretable
preference models. We also aim to design learning algorithms suited to contexts that
extend beyond passive learning (i.e., using a pre-acquired database of preference state-
ments). For instance, we will seek to handle incoming streams of preference examples in
an online setting or to interact with the decision maker by selecting preference queries
in an active learning framework. To guide the reader, Table 1.6 presents the preference
models and learning parameters considered in each chapter, along with the optimization
methods used.

Learning Setting Passive Active Online

Preference Model

Marginal utilities
(with Choquet integral)

Chapter 2:

LP

Capacity-based
aggregation function
linear in the capacity

Chapter 2: Chapter 5: Chapter 6:

LP, QP exhaustive
search

RDA,ADMM

Chapter 3:

IRLS, QP

Aggregation function non
linear in its parameter

Chapter 5:

ex. search

GAI-decomposable utility
Chapter 4:

SOCP

Table 1.6: Correspondence between models, settings, chapters and optimization tools.

55



Chapter 2. Preference Modeling and Preference Learning

56



Chapter 2
Learning Sparse Preference
Representations based on Choquet
Integrals

Contents
1 Learning Marginal Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.1 Decision-Making Under Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.2 Multi-criteria/attribute Decision-Making . . . . . . . . . . . . . . . . . . . . . . 72

2 Learning Sparse Representations of Capacities . . . . . . . . . . . . . . . . . 76
2.1 The Möbius Transform for Sparse Capacity Representations . . 77
2.2 Sparse Möbius Learning with ℓ1-regularization . . . . . . . . . . . . . . . . 80

3 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.1 Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.2 Learning marginal utility functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.3 Learning Sparse Möbius Representations of Capacities . . . . . . . . 93
3.4 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Summary
In this chapter, we address the challenge of fitting the parameters of the prefer-

ence model to the DM value system to explain or predict her preferences and propose a
methodology dedicated to the identification of marginal utilities and capacities in prefer-
ence models involving Choquet integrals. In particular, the objective is to derive sparse
representations of capacities that do not rely on cardinal-based predetermined sparsity
patterns, such as k-additivity, but reveal from preference data the most significant in-
teractions between viewpoints. We show that we can successively learn marginal utili-
ties from properly chosen preference examples, and sparse representations of capacities.
Specifically, we propose a sparse learning approach based on adaptive ℓ1-regularization
for determining a sparse Möbius representation of the capacity fitted to the observed
preferences. We present numerical tests to compare different regularization methods. We
also show the advantages of our approach compared to basic methods that do not seek
sparsity or that force sparsity a priori by requiring k-additivity. This chapter is based
on several publications: [Herin et al., 2022a] for decision-making under uncertainty and
[Herin et al., 2022b, 2024c] for multi-criteria/attribute decision-making.
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Introduction

Due to its high versatility, the Choquet integral is often regarded as one of the
most general compromise aggregator; it indeed encompasses various simpler aggregators
like the weighted sum, OWA, and WOWA (see Subsection 1.3.1 of Chapter 1) and thus
includes a rich family of aggregation functions. The Choquet integral therefore provides a
natural setting to study how model complexity can be fitted to the preference system we
want to describe or implement. For this reason, we focus in this chapter on the learning
of the preference model that is the Choquet integral of marginal utilities (CIU).

The CIU model is based on two types of preference parameters: univariate marginal
utilities defining the attractiveness of consequences on every relevant viewpoint and a set
function named capacity, monotonic w.r.t. set inclusion, assigning a weight to every
subset of viewpoints. This weighting system is then employed by the Choquet integral to
perform a kind of sophisticated weighted average of the marginal utilities. In this chapter,
we also consider the bipolar Choquet integral of marginal utilities (bi-CIU) which is an
extension of CIU that allows modeling distinct behaviors at the aggregation stage when
facing “good” or “bad” consequences. For this, bi-CIU uses two capacities that cooperate
in weighting viewpoints or subsets of viewpoints; one applies to the positive part of the
marginal utility vector whereas the other applies to the negative part.

The use of possibly non-additive capacities in CIU (resp. bi-CIU) requires the
definition of 2n (resp. 2n+1) weighting parameters if n is the number of viewpoints under
consideration, i.e., one (resp. two) weight for every subset of viewpoints. The multiplicity
of these parameters obviously induces a significant gain of expressiveness compared to
simpler preference models such as the weighted sum of marginal utilities. However, it
also obviously raises the question of the parsimonious learning of the parameters defining
the capacity, which could indeed prevent over-fitting of preference data and lead to more
compact and more explainable preference models.

The question of learning what are the most significant subsets of interacting view-
points and how a sparse representation of the capacity can be derived from preference
examples remains underexplored in the literature. Some attempts to control the complex-
ity of the capacity have been made using sparsity-inducing regularizations (see Subsection
3.2.2 of Chapter 1) on the capacity itself or on transforms of the capacities such as the
Shapley values and the interaction indices (see Equation 1.7 and 1.6) [Anderson et al.,
2014, Adeyeba et al., 2015, Kakula et al., 2020b, Pinar et al., 2017, de Oliveira et al.,
2022]. However, seeking sparse capacities is somewhat at odds with monotonicity, as
the capacity weights increase with set inclusion. Therefore, it is important to discuss
the appropriate capacity transformation to obtain sparse representations of the capacity.
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Notably, the Möbius representation seems to have been little exploited, or combined with
predetermined cardinal-based sparsity patterns [Tehrani and Hüllermeier, 2013, Tehrani
et al., 2012a] such as k-additivity (see Definition 1.10), which involve drastic model re-
ductions that may significantly impact our ability to fit preference data with relevant
CIU models. Additionally, as far as we know, the question of assessing the quality of the
interaction selection in the CIU model obtained with standard sparsity-inducing regular-
izations such as ℓ1-regularization has never been addressed.

Moreover, the above-mentioned contributions do not address the challenge due to
the interplay of marginal utilities and capacities in the computation of CIU values, mak-
ing the learning of these two types of parameters interdependent. This double learning
task is all the more difficult as marginal utilities and capacities are usually not directly
observable and must be derived from preference statements (comparisons of alternatives
or possibly overall evaluations of alternatives, i.e., overall utility values). In practice,
marginal utilities are standardly assumed to be known, or priorly acquired using elici-
tation procedures such as the MACBETH method [Bana e Costa and Vansnick, 1997].
However, this latter method relies on direct queries of utility values ui(xi) for some con-
sequences xi, which may be difficult to answer. Other approaches under the form of
standard sequences have been proposed [Wakker and Deneffe, 1996, Abdellaoui, 2000]
(known as the tradeoff methods) in decision-making under risk for specific instances of
the CIU model, i.e., the RDU (rank dependent utility) model [Quiggin, 2012] and the
CPT (cumulative prospect theory) model [Kahneman and Tversky, 1979]. However, in
addition to being formulated for particular CIU instances and decision contexts, these
approaches are sensitive to the propagation of response errors along the elicitation pro-
cess [Blavatskyy, 2006] (see Subsection 2.1 for a more in-depth review of related work on
marginal utilities elicitation).

The double learning task has been addressed from the perspective of preference
learning in the context of logistic regression (Choquistic regression) [Tehrani et al., 2014a]
and hierarchical Choquet integrals [Bresson, 2022] by simultaneously learning both type
of parameters. More precisely, these methods rely on a non-convex RERM problem (see
Definition 1.21) whose variables include both the marginal utilities and the capacity,
and whose resolution is based either on the use of a black-box nonlinear optimization
solver, which entails a high computational cost according to the authors (tested with
2-additive capacities), or on a neural network architecture designed according to a pre-
defined criterion aggregation hierarchy. Here, we aim to exploit the elicitation expertise
developed in decision theory, and in particular, to leverage preference queries inspired by
the tradeoff method, which allow for isolating the respective effect of marginal utilities and
capacities. This then makes possible a sequential approach in which marginal utilities
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are learned first, followed by the learning of a sparse representation of capacities through
the formulation of a convex RERM problem with sparsity-inducing regularizations.

Contributions and Chapter Organization First, in Section 1, we present an ap-
proach to learn marginal utilities in the context of decision-making under uncertainty
where a single marginal utility needs to be defined since alternatives are acts with n

possible consequences, all expressed in terms of payoffs. Then, the method is extended
to the context of multi-criteria/attribute decision-making. In both contexts, we first for-
mulate preference queries inspired by the tradeoff method, whose answers yield a set of
linear constraints on the marginal utilities. We then formulate the learning problem as
a spline regression where the objective is to minimize the violation of the constraints.
Then, in Section 2, we propose an approach to learn in a second step sparse represen-
tations of capacities in the CIU and the bi-CIU model. More specifically, we start by
motivating the choice of the Möbius transform over the capacity or the interaction index
transform for applying sparsity-inducing penalties, and then formulate a ℓ1-regularized
learning problem. Limitations of this regularization in properly selecting interactions
within the CIU model are then identified by leveraging the variable selection properties
of ℓ1-regularized regressions established in the statistical learning literature. We then
propose addressing these issues using adaptive ℓ1-regularization. Finally, in Section 3, we
present numerical tests to compare the performances of our learning approach compared
to baseline methods.

Notations and Preliminaries

In this chapter, the notations used are those of Section 1 of Chapter 1. More
precisely, we consider a set N = {1, . . . , n} of n viewpoints w.r.t. which alternatives are
evaluated. Alternatives are then described by vectors x = (x1, . . . , xn) whose components
xi are their consequences w.r.t. to the ith viewpoint. The set of possible consequences
w.r.t. viewpoint i is denoted by Xi and thus vectors x belong to the Cartesian product
X = X1 × . . . × Xn. Also, the notation X−i denotes the Cartesian product ∏j∈N\iXj.
Additionally, as in Subsection 1.3 of Chapter 1, the elements of Xi are assumed to be
ordered according to a weak order ≿i such that for any xi, x

′
i ∈ Xi, xi ≿i x

′
i reads “xi

is a better consequence than x′
i w.r.t. viewpoint i”. Marginal utilities are then defined

as real-valued functions ui : Xi → R, i = 1, . . . , n representing these orders, i.e., such
that for any xi, x

′
i ∈ Xi, xi ≿i x

′
i ⇐⇒ ui(xi) ≥ ui(x′

i). Necessarily, ui is increasing with
≻i and defined up to a positive affine translation αiui + βi with αi > 0. Thus, among
the infinite possibilities, in what follows we consider functions ui valued in a common
interval [a, b] (potentially obtained from any utility function compatible with ≿i with an
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appropriate choice of αi, βi). Note that this setting requires assuming that ≿i can be
represented by a bounded utility function. Finally, utilities ui, i = 1, . . . , n are assumed
to be commensurate (see Remark 1.4).

Using these notations, the Choquet integral of marginal utilities (CIU), denoted by
huw, is the following value function:

Definition 2.1 (Choquet integral of utilities (CIU)). For any x ∈ X , hUw(x) =
Cw(U(x)) = Cw(u1(x1), . . . , un(xn)), where U = (u1, . . . , un) is a vector of marginal util-
ities ui, i = 1, . . . , n, w is a capacity (see Definition 1.8) and Cw is the Choquet integral
w.r.t. w (see Definition 1.9).

Additionally, in what follows, for any x ∈ R, x+ and x− respectively denotes x+ =
max{0, x} and x− = max{0,−x}. Also, by convention, the notation S ⊆ N excludes the
empty set. Moreover, a “non-decreasing” (resp. “increasing”) function of one variable is a
function that remains constant or increases (resp. increases) when this variable increases.
Similarly, real number x is said “non-negative” (resp. “positive”) if x ≥ 0 (resp. x > 0).

1 Learning Marginal Utilities

1.1 Decision-Making Under Uncertainty

In decision-making under uncertainty (DMU) [Savage, 1954], alternatives are acts
described by their outcomes in the n possible states of nature, which represent all the
possible scenarios (concerning the object the DM is uncertain about) (see also [Gonzales
and Perny, 2020]). In this setting, N is thus the set of all states of nature, and any subset
S ⊆ N is an event. For instance, in the context of an economic policy choice, the DM
may be uncertain about the evolution of an international conflict which is decisive for
the policy’s outcome. There could then be three states of nature: outbreak (1), status-
quo (2) or stabilization of the conflict (3). Then N = {1, 2, 3} and for instance, the set
S = {1, 3} represents the event “s = 1 or s = 3” (i.e., outbreak or stabilization of the
conflict) where s is the actual state of nature. Note that a state of nature corresponds to
an elementary event in probability theory (i.e., one specific possible result of a random
experiment).

The outcomes of the acts in the n states of nature are usually regarded as payoffs.
For instance, in the example of the choice of an economic policy, the outcomes could be
the payoffs generated by the policy expressed in some currency. Let X denote the set of
possible payoffs, which for simplicity is assumed to be the real line in the following. In this
setting, the set Xi of possible consequences of an alternative w.r.t. to the ith viewpoint

61



Chapter 2. Learning Sparse Preference Representations based on Choquet Integrals

(i.e., the ith state of nature) equals the set of possible payoffs X for any i ∈ N and
alternatives are described by payoff vectors x = (x1, . . . , xn) ∈ X = Xn. Therefore, the
CIU model involves a unique marginal utility function u : X → R, describing the DM’s
attractivity w.r.t. payoffs. As attractivity naturally increases with payoffs, elements of
X are ordered by “the higher the better” and u is supposed to be an increasing function.

The role of function u is well understood and the decision behavior of an individual
can be interpreted by its analysis. For instance, in expected utility theory [Von Neumann
and Morgenstern, 1944], which pertains to decision-making under risk where outcome
probabilities are known, the DM compares lotteries according to their expected utility.
More formally, let l = (x1; p1, . . . , xn; pn) denotes the lottery yielding payoff xi with
probability pi, where outcomes have been ordered (i.e., x1 ≤ . . . ≤ xn). Then, the
expected utility of l, denoted by EU(l), is defined by EU(l) = ∑n

i=1 u(xi)pi. In this
setting, risk aversion (preference for certain payoffs over uncertain payoffs with known
probabilities), is equivalent to the concavity of u and the level of risk aversion of an
individual can be measured from the curvature and the slope of his/her utility function
[Arrow, 1971, Pratt, 1978].

Choquet expected utility Preference model CIU is known in DMU under the name of
Choquet expected utility (CEU) [Schmeidler, 1989]. CEU combines the utility function u,
describing the DM’s sensitivity towards payoffs, with a capacity w, describing the DM’s
sensitivity towards uncertainty (also known as chance attitude [Wakker, 2001]), to assign
to any alternative x ∈ X the score hUw(x) with U = (u, . . . , u), denoted by hUw(x).

For any event S, w(S) can be regarded as the likelihood attached to event S by
the DM (also known as subjective probability [?]). When w is additive, i.e., w(S) =∑
i∈S w({i}) for any S ⊆ N , it consists in a standard probability distribution over the set

of states of nature. In this case, CEU boils down to EU, i.e., hUw(x) = ∑n
i=1 w({i})u(xi)

where w({i}) is the subjective probability of the ith state of nature. In contrast to
decision-making under risk, these subjective probabilities are not known and have to be
derived from the DM’s preferences over acts. Additionnally, a DM may use a non-additive
capacity when comparing acts, as illustrated in the following standard urn example due
to [Ellsberg, 1961].

Example 2.1. An urn contains 90 balls including 30 red, and 60 blue or yellow balls
in unknown proportion. We consider four bets, on the one hand x (resp. y) yield-
ing 100$ if the drawn ball is red (resp. blue), and on the other hand z (resp. t)
yielding 100$ if the drawn ball is not blue (resp. not red). Here N = {R,B, Y } for
red, blue, yellow, and the acts under consideration are x = (100, 0, 0), y = (0, 100, 0),
z = (100, 0, 100) and t = (0, 100, 100). Note that the pair (x, y) compares similarly
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to the pair (z, t) except that the common outcome attached to yellow balls moves from
0 to 100$. Despite this similarity, most of people prefer x to y but t to z. Such
preferences can not be represented using an additive capacity (i.e., EU) since it would
lead to: w({R})u(100) + w({B})u(0) ≥ w({R})u(0) + w({R})u(100) on one side and
w({R})u(100) + w({B})u(0) < w({R})u(0) + w({R})u(100) on the other.

However, these preferences can be represented by CEU using a non-additive ca-
pacity. Let us assume that u(0) = 0 and u(100) = 1 and w({R}) = 1/3, w({B}) =
w({Y }) = 0, w({R,B}) = w({R, Y }) = 1/3, w({B, Y }) = 2/3 and w({R,B, Y }) = 1.
Note that for all events, w yields the lower possible probability of the event according to our
knowledge of the urn content. We have hUw(x) = 0w({R,B, Y }) + (1− 0)w({R}) = 1/3.
Similarly we obtain hUw(y) = 0, hUw(z) = 1/3 and hUw(t) = 2/3. Hence, hUw(x) > hUw(y)
and hUw(t) > hUw(z) which is consistent with the observed preferences.

Remark 2.1 (interactions in DMU). It could have also been observed that preferences
x ≿ y and z ≺ t in Example 2.1 consist in an example of mutual preferential indepen-
dence violation for S = {R,B} (see Remark 1.2), thus indicating that no additive value
function can represent them. As illustrated in multi-criteria/attribute decision-making
in Subsection 1.3 of Chapter 1, the potential non-additivity of capacity w allows CEU to
bypass this descriptive limitation by accounting for interactions between states of nature
in the individual’s uncertainty perception. For instance, in Example 2.1, the probability
of the events {R} and {B} are imprecisely known (between 0 and 2

3) while the probability
of the event {R,B} is known and equal to 2

3 .

The interesting properties of the Choquet integral, already discussed in Section 1.2
of Chapter 1, have been extensively studied in the DMU literature to understand the CEU
model. For instance, CEU satisfies monotonicity (see Definition 1.6), i.e., for any pair of
act x, x′ ∈ X , if xi ≥ x′

i for any i ∈ N then hUw(x) ≥ hUw(x′). Also, preferences induced by
CEU satisfy uncertainty aversion if and only if u is concave and w is supermodular (see
Definition 1.13) [Chateauneuf and Tallon, 2002a]. Uncertainty aversion (also known as
convexity of preferences) is the tendency to prefer certain payoffs over uncertain payoffs.
More formally, for any α ∈ [0, 1], if the DM is indifferent between x and x′ then αx +
(1 − α)x′ will be preferred to x (and also to x′ by symmetry). The convex mixture of
x and x′ reduces the uncertainty of outcomes w.r.t x and x′, making the DM better off.
Note that this property follows from the fact that the Choquet integral associated with a
supermodular capacity favors balanced solutions [Lesca and Perny, 2010], as illustrated
in Example 1.5 of Chapter 1.

Additionally, in decision-making under risk, CEU boils down to the rank-dependent
utility (RDU) model whenever, for any S ⊆ N , w(S) = g(∑i∈S pi) where p1, . . . , pn are
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the outcomes’ probabilities and g is a monotonic weighting function such that g(0) = 0
and g(1) = 1[Quiggin, 2012]. It is formally defined as follows:

Definition 2.2 (rank-dependent utility (RDU)). For any lottery l = (x1; p1, . . . , xn; pn)
such that x1 ≤ . . . ≤ xn,

RDU(l) =
n∑
i=1

(g(
n∑
k=i

pk)− g(
n∑

k=i+1
pk))u(xi)

where g : [0, 1]→ [0, 1] is a non-decreasing function such that g(0) = 0 and g(1) = 1.

If in addition, u is linear then CEU boils down to Yaari’s model [Yaari, 1987]. Below,
we present standard methods in decision-making under risk for eliciting the utility func-
tion in the EU and RDU model, respectively known as the certainty-equivalent method
[Von Winterfeldt and Edwards, 1986] and tradeoff method [Wakker and Deneffe, 1996,
Abdellaoui, 2000]. The latter method is then exploited for eliciting the utility function
in the CEU model.

Certainty-equivalent method within EU theory A standard method to elicit the
utility function in the EU model is to rely on certainty-equivalent queries involving lotter-
ies. Such queries take the following form: “for two outcomes o1, o2 ∈ X such that o1 ≤ o2

and a probability p ∈ [0, 1], what is the outcome o3 such that (o3; 1) ∼ (o1; p, o2; 1− p)?”.
Outcome o3 is then said to be the certainty equivalent of lottery l = (o1; p, o2; 1− p) and
the indifference statements yields EU((o3; 1)) = EU(l) which is equivalent to u(o3) =
pu(o1)+(1−p)u(o2). As u is defined up to a positive affine transformation, one can start
with two outcomes o1, o2 ∈ X whose values are arbitrarily set to u(o1) = 0, u(o2) = 1 and
a probability p = 1

2 , and obtain a first point u(o3) = 1
2 . The utility curve is then usually

incrementally constructed using a dichotomic scheme that asks the certain-equivalent of
(o1; 1

2 , o3; 1
2) on one side and of (o3; 1

2 , o2; 1
2) on the other, and so on [Von Winterfeldt and

Edwards, 1986].

Tradeoff method in the RDU model If we now consider the RDU model with a
weighting function g, the knowledge of the certainty equivalent o3 of the two-outcome
lottery (o1; p, o2; 1 − p) gives us u(o3) = g(p)u(o1) + (1 − g(p))u(o2). However, since g
is unknown, this equality no longer allows us to construct the utility curve as in the
certainty-equivalent method. A way to disentangle parameter u and g is to exploit the
tradeoff method [Wakker and Deneffe, 1996, Abdellaoui, 2000, Hines and Larson, 2010,
Perny et al., 2016]. This method relies on tradeoff queries of the following form: “for an
outcome o1 ∈ X, two reference outcomes r, R ∈ X such that r < R and a probability
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p ∈ [0, 1], what is the outcome o2 such that (1− p; o1, p;R) ∼ (1− p; o2, p; r)?”
Such query, denoted by Q(o1), asks the DM how much of an increase in the outcome

with probability 1 − p would be needed to compensate for a loss of the outcome with
probability p. Using this indifference statement, we obtain that RDU((1− p; o1, p;R)) =
RDU((1−p; o2, p; r)) which is equivalent to (u(o1)−u(o2))(1−g(p)) = g(p)(u(r)−u(R)).
Finally, using a second query Q(o2) whose answer is o3, if 0 < g(p) < 1, we obtain the
following equality: u(o1)− u(o2) = u(o2)− u(o3).

Then, these queries are used to elicit u within a given interval [0,M ] ⊆ X (where
0,M are two outcomes such that 0 < M) by taking o1 = 0 and r, R such that 0 <

M < r < R, and incrementally construct a standard sequence of outcomes {o1, o2, ..., oq}
where ot is the answer to Q(ot−1). The sequence stops at step t = q when ot ≥M and by
construction, u(ot+1)−u(ot) = u(ot)−u(ot−1), t = 2, . . . , q−1. Again, one can arbitrarily
set u(o1) = 0 and u(oq) = 1 and the utility function is thus completely determined on
the points of the standard sequence, i.e., u(ot) = (t− 1)/(q − 1), t = 1, . . . , q.

In the following, we exploit the tradeoff method principle to derive a method for
learning the utility function in the CEU model. First, we propose tradeoff queries adapted
to the CEU model, and then we formulate a monotonic regression problem to learn the
utility function from the obtained tradeoff indifference statements.

1.1.1 Tradeoff Queries in CEU Theory

Tradeoff queries The counterpart in DMU (where outcomes’ probabilities are un-
known) of the two-outcome lotteries used in decision-making under risk are the mixtures
of constant acts. For any event S ⊆ N and any acts x, x′ ∈ X , the mixture of acts xSx′

whose outcome in the ith state of nature is xi if i ∈ S and x′
i otherwise. Moreover, a

constant act is an act whose outcome does not depend on the state of nature. For any
outcome o ∈ X, the constant act of outcome o is denoted by ō = (o, . . . , o). Then, for
any o1, o2 ∈ X and any S ⊆ N , the mixture of constant acts ō1Sō2 is the act yielding
outcome o1 when S occurs and o2 otherwise.

For any outcome o ∈ X, it can easily be checked that the overall value of the
constant act ō under CEU equals o, i.e., hUw(ō) = o, provided w(N) = 1. Then, asking
the certainty equivalent o3 ∈ X of the act ō1Sō2 for o1, o2 ∈ X, yields the indifference
ō1Sō2 ∼ ō3 which is equivalent to hUw(ō1Sō2) = w(S)u(o1) + (1 − w(S))u(o2) = u(o3).
However, similarly to the case of the RDU model, such equality does not allow to elicit
the utility function since capacity w is unknown. For this reason, we propose to apply
the principle of the tradeoff method to isolate u within CEU.

As in the tradeoff method, u is elicited within a given interval [0,M ] ⊆ X where
0,M ∈ X are two outcomes such that 0 < M . The proposed method requires the
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existence of an event S such that 0̄ ≺ 0̄SM̄ ≺ M̄ . Within CEU theory these strict
preferences translate into hUw(0̄) < hUw(0̄SM̄) < hUw(M̄) which is equivalent to u(0) =
hUw(0̄) < u(0)(1 − w(S̄)) + u(M)w(S̄) < hUw(M̄) = u(M), i.e., 0 < w(S̄) < 1 since
u(0) < u(M). The following property shows that, under this assumption, tradeoff queries
formulated with mixtures of constant acts can be used to derive constraints on the utility
function within CEU theory:

Proposition 2.1. Let S ⊆ N such that 0̄ ≺ 0̄SM̄ ≺ M̄ , and consider outcomes
o1, r, R ∈ X such that 0 ≤ o1 < M < r < R. If the two following queries are suc-
cessively asked:

- QS(o1|r, R): “what is the outcome o2 such that: ō1Sr̄ ∼ ō2SR̄?”

- QS(o2|r, R): “what is the outcome o3 such that: ō2Sr̄ ∼ ō3SR̄?”

then, the following equality holds:

u(o1)− u(o2) = u(o2)− u(o3) (2.1)

Proof. As r < R, we necessarily have o2 ≤ o1 and o3 ≤ o2 (otherwise we would have
ō1Sr̄ ≺ ō2SR̄ and ō2Sr̄ ≺ ō3SR̄). Therefore o3 ≤ o2 ≤ R holds. Thus we have
hUw(ō2SR̄) = u(o2)(1 − w(S̄)) + u(R)w(S̄) and hUw(ō1Sr̄) = u(o1)(1 − w(S̄)) + u(r)w(S̄).
Hence, since the first indifference statement yields hUw(ō2SR̄) = hUw(ō1Sr̄), we have u(o2)(1−
w(S̄))+u(R)w(S̄) = u(o1)(1−w(S̄))+u(r)w(S̄) and therefore (1−w(S̄))[u(o1)−u(o2)] =
w(S̄)[u(R)−u(r)]. Similarly, the second indifference statements implies (1−w(S̄))[u(o2)−
u(o3)] = w(S̄)(u(R)−u(r)]. Finally, we have (1−w(S̄))[u(o1)−u(o2)] = (1−w(S̄))[u(o2)−
u(o3)] and since w(S̄) < 1, we obtain Equation 2.1.

As illustrated in Figure 2.1, with such indifferences, the DM makes a tradeoff
between downgrading o1 in o2 (or o2 in o3) if event S occurs and upgrading r in R if event
S does not occur. These tradeoff queries are referred to as Q-queries in the following.

Short standard sequences Similarly to the tradeoff method, such queries could be
used to construct a standard sequence by sequentially asking queries QS(ot|R, r). More
precisely, one could start with o1 = 0, take ot+1 as the answer to query QS(ot|R, r), and
stops at step t = q when ot ≥ M . By construction, this sequence is such that for any
t = 1, . . . , q, ot ≤ ot+1 and u(ot+1)− u(ot) = u(ot)− u(ot−1) by Equation 2.1. By letting
u(o1) = 0 and u(oq) = 1, the utility function is completely determined on the standard
sequence, as in the tradeoff method for RDU, i.e., u(ot) = (t− 1)/(q− 1) for t = 1, . . . , q.
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Figure 2.1: Indifferences obtain with QS(o1|r, R) and QS(o2|r, R) queries.

However, if the DM makes some errors in assessing ot in the early steps of the
sequence, these errors will propagate and impact the whole sequence [Blavatskyy, 2006].
Since the noise distortion naturally increases error with the length of the standard se-
quence, we propose an alternative approach that relies on multiple minimal length (q = 2)
standard sequences of type (o1, o2, o3). Multiplicity is obtained by varying the initial loca-
tion o1, and the mesh (r, R). Putting all together, we obtain a database D = (oℓ1, oℓ2, oℓ3)Tℓ=1

associated with the linear constraints:

u(oℓ1)− u(oℓ2) = u(oℓ2)− u(oℓ3), ℓ = 1, . . . , T (2.2)

Then, we propose to perform a spline regression to identify the utility function that
best fits the set of linear constraints. In particular, given that the utility function is
non-decreasing, we suggest employing a basis of I-spline functions, which are smooth,
non-negative, and monotonic (non-decreasing).

1.1.2 Monotonic Spline Regression

Spline functions A spline function of order k, k ∈ N∗ is a function that is piecewise
polynomial of degree less than or equal to k, and of class Ck−1 (i.e., whose derivatives up
to order k− 1 are continuous) [De Boor, 1978]. Spline functions are widely used for data
interpolation or approximation due to their ability to smoothly approximate complex
shapes (see for instance [Hastie et al., 2009]-Chapter 5). Moreover, they allow for a
compact representation of value functions. Indeed, a spline function can be expressed
as a linear combination of basis functions and is thus characterized by the coefficients
of the combination. Since the utility function increases with payoffs, we will use a basis
of non-decreasing spline functions, known as I-spline functions [Ramsay, 1988]. I-spline
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Figure 2.2: Examples of M -basis of size m = 5 for k = 2 (left) and k = 3 (right).

functions are built upon M-spline functions, which we introduce below.
A M-spline function of order k, k ∈ N∗, is a non-negative and piecewise polynomial

function where each piece is of degree less than or equal to k− 1. A m-dimensional basis
of k-order M-Spline functions defined over an interval [a, b] can be constructed using a
set of knots t = {t1, . . . , tm+k} such that:

• t1 = · · · = tk = a

• tm+1 = · · · = tm+k = b

• tl < tl+k, l = 1, . . . ,m

Then, the basis functions Ml, l = 1, . . . ,m are defined for any x ∈ [a, b] as follows:

Ml(x | k, t) =


1

tl+1−tl
if k = 1 and tl ≤ x < tl+1

(k·(x−tl)·Ml(x|k−1,t)+(tl+k−x)·Ml+1(x|k−1,t))
(k−1)·(tl+k−tl)

if k > 1

0 otherwise.

Functions M1, . . . ,Mm form a basis for the vector space of functions defined on [a, b],
polynomial of degree less than or equal to k−1 on each interval [tl, tl+1[ and of class Ck−1−r

in the neighborhood of each knot of multiplicity r (number of times the knot appears in
the subdivision). In the following, we only consider the case r = 1 for the inner knots of
the subdivision (i.e., tk+1, . . . , tm), and thus functions Ml are of class Ck−2 within ]a, b[. As
an illustration, the M -basis for m = 5, k = 2 and t = (0, 0, 0.2, 0.4, 0.8, 1, 1) is represented
on the left side of Figure 2.2 and for m = 5, k = 3 and t = (0, 0, 0, 0.3, 0.7, 1, 1, 1) on the
right side.

Then, m-dimensional basis of k-order I-Spline functions defined on the interval ]a, b[
can be constructed using a set of knots t = {t1, . . . , tm+k+2} such that:

• t1 = · · · = tk+1 = a
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• tm+2 = · · · = tm+k+2 = b

• tl < tl+k, l = 1, . . . ,m+ 1

The I-spline basis functions, denoted by Il, l = 1, . . . ,m, are then defined for any x ∈ [a, b]
as follows:

Il(x | k, t) =
∫ x

a
Ml(u | k, t)du =


0 if j < i,

1 if j > i+ k − 1,∑j
z=i

tz+k+1−tz
k+1 Mz(x | k + 1, t) otherwise.

where j is the index of t such that tj ≤ x < tj+1. Note that by convention, function Il is
defined on the boundaries of the interval by Il(a) = 0 and Il(b) = 1.

As integrals of M-spline functions that are non-negative functions of class Ck−2,
I-spline functions are non-negative and non-decreasing functions of class Ck−1. Then,
smooth and non-decreasing functions vα can be generated using linear combinations of
the I-spline basis with non-negative coefficients α = (α1, . . . , αm) ∈ Rm

+ as follows:

vα(x) =
m∑
l=1

αlIl(x), for any x ∈ [a, b] . (2.3)

For the sake of illustration, the I-spline basis form = 5, k = 3 and t = (0, 0, 0, 0.2, 0.5,
0.8, 1, 1, 1) is represented in Figure 2.3 along with an instance of function vα for α =
(0.2, . . . , 0.2).

Figure 2.3: Example of I-spline basis of size m = 5 for k = 3 and vα for α = (0.2, . . . , 0.2)

Regression problem Then, we propose to perform a regression for learning the utility
function using the parametric model given by Equation 2.3 for I-spline functions defined
over [a, b] = [0,M ]. More precisely, we want to determine the parameter α that best fits
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the set of constraints associated with the database D = (oℓ1, oℓ2, oℓ3)Tℓ=1 given by Equation
2.2. The regression problem is thus formulated as follows:

min
α∈∆m

T∑
ℓ=1
|2vα(oℓ2)− vα(oℓ1)− vα(oℓ3))| (2.4)

Here ∆m denotes the simplex of size m, i.e., {α ∈ Rm
+ |
∑m
l=1 αl = 1}, where the sum

constraint guarantees that vα(M) = 1 since Il(M) = 1, l = 1, . . . ,m. Note that vα(0) = 0
since Il(0) = 0, l = 1, . . . ,m.

Remark 2.2 (linearization of the absolute value). Throughout the thesis, we use a stan-
dard trick to reformulate minimization problems involving absolute values in the objective
as linear programs. This trick relies on the following remark: for any x ∈ R, there exists
x+, x− ∈ R+ such that x = x+ − x−. Among the possible pairs (x+, x−), the one that
minimizes the sum x+ + x− is such that x− = 0 if x ≥ 0 and x+ = 0 if x ≤ 0, which
is equivalent to x+ + x− = |x|. Then minimizing |x| boils down to solving the following
linear program:

min
x,x+,x−

x+ + x−

s.t. x+ − x− = x

Hence, using linearization variables ϵ+
ℓ , ϵ

−
ℓ , to model the constraint violation |2vα(oℓ1)−

vα(oℓ2)−vα(oℓ0))|, the problem can be formalized as the following linear program with T+1
constraints and m+ 2T variables:

min
α∈Rm

z =
T∑
ℓ=1

(ϵ+
ℓ + ϵ−

ℓ ) (2.5)

m∑
l=1

αl(2Il(oℓ2)− Il(oℓ1)− Il(oℓ3)) = ϵ+
ℓ − ϵ−

ℓ , ℓ = 1, . . . T

m∑
l=1

αl = 1

ϵ+
ℓ ≥ 0, ϵ−

ℓ ≥ 0, ℓ = 1, . . . , T
αl ≥ 0, l = 1, . . . ,m

Hereafter let α∗ denote the optimal solution, z∗ the optimal value of Problem 2.5.

Uncertainty quantification on the learned utility functions Taking into consid-
eration that the number of observations may be limited (as the DM may not be able to
answer a high number of Q-queries), we need to assess the level of uncertainty on the
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learned marginal utility function. To this end, we examine a neighborhood of the optimal
solution defined by z∗ ≤ z ≤ z∗ + δ where δ is a tolerance threshold, and denoted by
Vδ(z∗). This neighborhood contains all parameters α such that vα satisfies the constraints
associated with database D with an error z at most equal to z∗ + δ.

The range of variation of vα within Vδ(z∗) is a good indicator of the level of uncer-
tainty allowed by the constraints. It can be measured by the following quantity:

ρ = max
o∈[0,M ]

{ max
α∈Vδ(z∗)

vα(o)− min
α∈Vδ(z∗)

vα(o)}

which may be estimated by discretization of [0,M ]. When ρ is too large (higher than a
predetermined threshold denoted by ϵ), the constraints are considered too weak to allow
for the identifiability of the utility function; one should carry on the Q-queries process.
The overall proposed learning procedure is summarized in Algorithm 2.1.

Algorithm 2.1: utility function learning with Q-queries
Inputs: 0,M, ϵ, δ
ℓ← 1, D ← ∅
while ρ ≤ ϵ do

Select Sℓ such that 0̄ ≺ 0̄SℓM̄ ≺ M̄
Select oℓ1, Rℓ, rℓ such that 0 ≤ oℓ1 < M < Rℓ < rℓ

oℓ2 ← answer to query QSℓ(oℓ1|Rℓ, rℓ)
oℓ3 ← answer to query QSℓ(oℓ2|Rℓ, rℓ)
D ← D ∪ {(oℓ1, oℓ2, oℓ3)}
(α∗, z∗)← solution and optimal value of Problem 2.5 with database D
ρ← maxo∈[0,M ]{maxα∈Vδ(z∗) vα(o)−minα∈Vδ(z∗) vα(o)}
ℓ← ℓ+ 1

Outputs: α∗

The proposed procedure enables the learning of the utility function on a portion
[0,M ] of the set of possible payoffs X using reference payoffs r, R higher than M . In the
case where the set of possible payoffs is a bounded interval [a, b] on which we want the
utility function to be completely determined, one can first use the proposed procedure for
0 = a,M = a+b

2 using reference outcomes r, R within [a+b
2 , b] and then use a symmetrical

learning procedure to learn the marginal utility on [a, a+b
2 ].

Remark 2.3 (Rashomon set). The set of model parameters Vδ(z∗) can be regarded as a
Rashomon set, formally defined as the set of all models that exhibit near-optimal accuracy
[Breiman, 2001]. This set is named after the Rashomon effect which describes how differ-
ent people can have contradictory interpretations of the same event. The Rashomon set is
a particularly relevant notion in interpretability in machine learning as a rich Rashomon
set could lead to various model interpretations [Semenova et al., 2022].
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1.2 Multi-criteria/attribute Decision-Making

In this section, the problem of learning marginal utilities within the CIU model is
addressed in the general context of multiattribute decision-making [Keeney and Raiffa,
1976, Dyer, 2005] (MADM), including in particular multicriteria decision-making (MCDM)
[Roy and Vincke, 1981, Grabisch, 2016b]. In MADM, alternatives are described by n at-
tributes, associated with no particular semantics. In MCDM, alternatives are described
by their performances w.r.t. n criteria, which are n different ways of evaluating the alter-
natives. More formally, a criterion can be defined as a real-valued function that assigns
to each alternative a measure of its performance w.r.t. a certain viewpoint. For instance,
an economic policy could be evaluated according to three criteria: economic efficiency,
social impact, and environmental impact.

In the MADM/MCDM setting, the set of alternative X thus takes the form of an
heterogenous Cartesian product X = X1×. . .×Xn. There is therefore n marginal utilities
ui : Xi → R, i = 1, . . . , n to be elicited. For the sake of generality, we propose a method
for learning marginal utilities within the bipolar Choquet integral of marginal utilities (bi-
CIU), which is a generalization of the CIU model allowing for modeling distinct behavior
in the face of “good” or “bad” consequences. Using this model thus requires obtaining
in close cooperation with the DM, for any viewpoints i ∈ N , a neutral element, denoted
by 0i, separating “good” and “bad” consequences within the consequence set Xi. Also,
we distinguish within Xi two elements referred to as the bottom level and the top level
consequences, respectively denoted by −1i and 1i. For any i ∈ N , marginal utility ui is
increasing with ≻i and consequences above the neutral level receive a positive marginal
value whereas consequences below the neutral level receive a negative marginal utility,
i.e., ui(−1i) = −1, ui(0i) = 0 and ui(1i) = 1.

In this setting, the bi-CIU model, denoted by hUw,w′ , is formally defined as follows:

Definition 2.3 (bi-CIU model). For any x ∈ X , hUw,w′(x) = BCw,w′(u(x)) where U =
(u1, . . . , un) is a vector containing marginal utilities ui, i = 1, . . . , n are n, (w,w′) are two
capacities and BCw,w′ is the bipolar-Choquet integral w.r.t. (w,w′) (see Definition 1.14).

The proposed method consists in learning independently the n marginal utilities
ui, i = 1, . . . , n using for each ui, a method inspired from the learning of the utility func-
tion in the CEU model. Similarly to the utility function learning, the proposed method
first derives constraints on ui using a specifically designed elicitation process and then
performs a monotonic spline regression. Also relying on tradeoff queries, the elicitation
process differs from the one used in DMU in that it not only allows for separating the
effect of marginal utilities from that of capacities in the Choquet integral but also isolates
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ui from the other marginal utilities uj, j ̸= i.

1.2.1 Tradeoff Queries in the bi-CIU Model

Let i be any element of N . The proposed elicitation process to derive constraints
on ui involves tradeoffs between attribute i and another attribute j of N that can be
freely chosen. Starting from an alternative x ∈ X and considering a given modification of
the jth attribute value (i.e., of component xj), the tradeoff query consists in asking which
variation of the ith attribute value (i.e., of component xi) would exactly compensate the
variation of xj. The existence of answers exactly achieving the compensation requires a
certain richness of attribute domain Xi. This assumption is formalized by the restricted
solvability axiom well known in mathematical psychology [Krantz and Tversky, 1971]. For
any two vectors x, x′ in X , let (xi, x′

−i) denote the vector derived from x′ by substituting
the ith component by xi. Then, restricted solvability can be stated as follows:

Definition 2.4 (restricted solvability). A preference relation ≿ on X satisfies re-
stricted solvability w.r.t. the ith component if for any x ∈ X , ai, bi ∈ Xi, t−i ∈ X−i

with (ai, t−i) ≿ x ≿ (bi, t−i), there exists x′
i such that x ∼ (x′

i, t−i). When this holds for
all i ∈ N , the binary relation is said to satisfy restricted solvability.

Restricted solvability is not always satisfied, especially in the case of discrete at-
tributes, as shown in the following example.

Example 2.2. Let X1 = {0, 1} and X2 = {0, 1
2 , 1} and define ≿ on X1×X2 by (x1, x2) ≿

(x′
1, x

′
2) iff x1 +x2 ≥ x′

1 +x′
2. We have (1, 0) ≿ (0, 1

2) ≿ (0, 0) but there is no x1 ∈ X1 such
that (x1, 0) ∼ (0, 1

2). Here restricted solvability does not hold w.r.t. the first component.

In the following, restricted solvability is assumed to hold. For the sake of readability,
the case where this assumption does not hold is detailed in Appendix A.1. Also, the
method requires that (1i,0−i) ≻ 0 ≻ (−1i,0−i), i.e., w({i}) > 0 > w′(N \ {i})− 1 under
the bi-CIU model. Let us now present the elicitation process to derive constraints on ui

successively below, and above the neutral level 0i.

(i) Marginal utility elicitation below the neutral level The proposed tradeoff
queries involve alternatives of the form (ai, bj,0−ij), denoting a vector of neutral conse-
quences everywhere except on components i and j where consequences are ai ∈ Xi and
bj ∈ Xj.

Proposition 2.2. For any attribute j ∈ N , let rj, Rj ∈ Xj, xi ∈ Xi such that 0j ≾j

rj ≺j Rj, xi ≾i 0i. If the two following queries are successively asked:
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Figure 2.4: Indifferences obtained with Q-queries below (left) and above (right) 0i.

- Qij(xi|Rj, rj) : what is the consequence yi such that (xi, rj,0−ij) ∼ (yi, Rj,0−ij)?

- Qij(yi|Rj, rj) : what is the consequence zi such that (yi, rj,0−ij) ∼ (zi, Rj,0−ij)?

then, the following equality holds:

ui(xi)− ui(yi) = ui(yi)− ui(zi) (2.6)

Proof. As rj ≺j Rj, we necessarily have yi ≾i xi and zi ≾i yi otherwise we would have
(xi, rj,0−ij) ≻ (yi, Rj,0−ij) and (yi, rj,0−ij) ≻ (zi, Rj,0−ij). Therefore, since xi ≾i 0i,
we have zi ≾i yi ≾i xi ≾i 0i and finally since 0j ≾j rj ≺j Rj, we obtain ui(zi) ≤ ui(yi) ≤
ui(xi) ≤ 0 ≤ uj(rj) < uj(Rj). Thus, hUw,w′(xi, rj,0−ij) = uj(rj)w({j})+ui(xi)(1−w′(N \
{i})) and similarly hUw,w′(yi, Rj,0−ij) = uj(Rj)w({j})+ui(yi)(1−w′(N\{i})). Thus, from
the first indifference statement, (xi, rj,0−ij) ∼ (yi, Rj,0−ij), we have: hUw,w′(xi, rj,0−ij) =
hUw,w′(yi, Rj,0−ij) and therefore (ui(xi)−ui(yi))(1−w′(N\{i})) = (uj(Rj)−uj(rj))w({j}).
Moreover, using the second indifference (yi, rj,0−ij) ∼ (zi, Rj,0−ij), we obtain (ui(yi) −
ui(zi))(1−w′(N\{i})) = (uj(Rj)−uj(rj))w({j}). Then (ui(xi)−ui(yi))(1−w′(N\{i})) =
(ui(yi)− ui(zi))(1− w′(N \ {i})). Finally, since (−1i,0−i) ≺ 0, i.e., w′(N \ {i}) < 1 we
obtain Equation 2.6.

If we additionally assume that (0i, Rj,0−ij) ≿ (xi, rj,0−ij) ≿ (−1i, Rj,0−ij), by
considering an instance of the restricted solvability axiom (Definition 2.4) obtained for
ai = 0i, bi = −1i, t−i = (Rj,0−ij) and x = (xi, rj,0−ij), one can see that an answer
yi ∈ Xi to question Qij(xi) is guaranteed to exist by the restricted solvability assumption.
A similar reasoning guarantees the existence of an answer to the second query.

As illustrated in Figure 2.4(left), with such indifferences, the DM makes a tradeoff
between upgrading rj in Rj on the jth attribute and downgrading xi in yi (or yi in zi) on
the ith attribute.
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(ii) Marginal utility elicitation above the neutral level The process is symmetric
to the one used to elicit ui below the neutral level.

Proposition 2.3. For any attribute j ∈ N , let rj, Rj ∈ Xj and xi ∈ Xi such that rj ≺j
Rj ≾j 0j, xi ≿i 0i. If yi is the answer to the query Qij(xi|rj, Rj) (i.e., (xi, Rj,0−ij) ∼
(yi, rj,0−ij)) and zi is the answer to the query Qij(yi|rj, Rj) (i.e., (yi, Rj,0−ij) ∼ (zi, rj,0−ij)),
then, the following equality holds:

ui(yi)− ui(xi) = ui(zi)− ui(yi) (2.7)

Proof. As rj ≺j Rj, we necessarily have yi ≿i xi and zi ≿i yi, otherwise we would have
(xi, Rj,0−ij) ≻ (yi, rj,0−ij) and (yi, Rj,0−ij) ≻ (zi, rj,0−ij). Therefore, since xi ≿i 0i,
we have zi ≿i yi ≿i xi ≿i 0i and finally since rj ≺j Rj ≾j 0j, we have uj(rj) < uj(Rj) ≤
0 ≤ ui(xi) ≤ ui(yi) ≤ ui(zi). Thus, hUw,w′(xi, Rj,0−ij) = ui(xi)w({i}) +uj(Rj)(1−w′(N \
{j})) and similarly hUw,w′(yi, rj,0−ij) = ui(yi)w({i})+uj(rj)(1−w′(N \{j})). Thus, from
the first indifference statement (xi, Rj,0−ij) ∼ (yi, rj,0−ij), we have: hUw,w′(xi, Rj,0−ij) =
hUw,w′(yi, rj,0−ij) and therefore (ui(yi)−ui(xi))w({i}) = (uj(Rj)−uj(rj))(1−w′(N \{j})).
Moreover, using the second indifference (yi, Rj,0−ij) ∼ (zi, rj,0−ij), we obtain (ui(zi) −
ui(yi))w({i}) = (uj(Rj) − uj(rj))(1 − w′(N \ {j})). Then (ui(yi) − ui(xi))w({i}) =
(ui(zi)− ui(yi))w({i}). Finally, since (1i,0−i) ≻ 0, i.e., w({i}) > 0 we obtain Equation
2.7.

Here also, assuming (1i, rj,0−ij) ≿ (xi, Rj,0−ij) ≿ (0i, rj,0−ij), the existence of
answer yi is due to restricted solvability. Again, a similar reasoning guarantees the
existence of an answer to the second query. Finally, Figure 2.4 (right) represents the two
indifference statements in the plan Xi ×Xj.

1.2.2 Monotonic Spline Regression

Similarly to Algorithm 2.1, we propose to construct a database of minimal length
standard sequences D = (xℓi , yℓi , zℓi )Tℓ=1 where for any ℓ, ui(xℓi)− ui(yℓi ) = ui(yℓi )− ui(zℓi ).
Again, multiplicity is obtained by varying the initial location xi (below and above the neu-
tral level), the reference dimension j and the mesh (rj, Rj). Then a monotonic regression
based on I-spline functions is performed using database D.

More precisely, we consider here that elements of Xi are real values such that for
any xi, x

′
i ∈ Xi, xi ≿i x

′
i ⇔ xi ≥ x′

i. If not, elements of Xi could be numerically
encoded according to ≿i. Then, marginal utility ui is modeled as a linear combination
of I-spline basis functions I1, . . . , Im defined over [−1i; 1i] with non-negative coefficients
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αi = (αi,1, . . . , αi,m) as follows:

ui,αi
(xi) = 2

m∑
l=1

αl,iIl(xi)− 1 (2.8)

Note that the latter formulation guarantees ui,α(−1i) = −1 and ui,α(1i) = 1 if ∑m
l=1 αl,i =

1 since for any l ∈ {1, . . . ,m}, Ii(−1i) = 0, and Ii(1i) = 0.
Then, using Equation 2.8, the problem of finding the marginal utility that best fits

the constraints associated with database D can be formalized as a linear program with
the relaxed constraints:

min
αi∈Rm

T∑
ℓ=1

(ϵ+
ℓ + ϵ−

ℓ ) (2.9)

m∑
l=1

αi,l(2Il(xℓi)− Il(yℓi )− Il(zℓi )) = ϵ+
ℓ − ϵ−

ℓ , ℓ = 1, . . . , T

m∑
l=1

αi,l = 1

2
m∑
l=1

Il(0i)αi,l − 1 = 0 (2.10)

ϵ+
ℓ ≥ 0, ϵ−

ℓ ≥ 0, ℓ = 1, . . . , T
αl,i ≥ 0, l = 1, . . . ,m

where constraint 2.10 guarantees ui,αi
(0i) = 0.

A similar linear program can be considered in the case of non restricted solvability
where preference statements replace indifference statements (see Appendix A.1). It is
sufficient to substitute linear inequalities used to approximate indifference judgments
with linear inequality used to approximate preference judgments.

2 Learning Sparse Representations of Capacities

In this section, marginal utility functions are assumed to have been learned before-
hand using one of the methods discussed in the previous section. To simplify notations,
alternatives are now described by vectors z = (z1, . . . , zn) whose component zi is the
marginal utility w.r.t. the ith viewpoint. We now focus on learning from preference
examples the second type of parameter in the CIU model (resp. bi-CIU model): the ca-
pacity (resp. two capacities) parameterizing the Choquet integral (resp. bipolar Choquet
integral).

In particular, the objective is to derive sparse representations of capacities (i.e.,
with few non-null coefficients) to prevent overfitting and enhance the interpretability of
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the CIU model by obtaining a clear view of the most significant subsets of interacting
viewpoints. However, because capacity coefficients increase with set inclusion, achieving
meaningful sparse representations is not straightforward. In response to this, we first
show the relevance of the Möbius transform for obtaining sparse representations of a
capacity.

2.1 The Möbius Transform for Sparse Capacity Representa-
tions

For any group of viewpoints S ⊆ N , the capacity weight w(S) reflects its global im-
portance, thereby accumulating the importance of all proper subsets of S. More formally,
by monotonicity w.r.t. set inclusion of w, w(S) ≥ w(T ) for any subgroup T ⊆ S. There-
fore, as soon as a viewpoint i ∈ S has non-null individual importance, i.e., w({i}) > 0,
then w(S) > 0. Then, capacities are dense weighting systems for which the concept of
sparsity is not relevant.

However, the information encoded in the capacity may admit a compact represen-
tation using capacity transforms. An interesting transform of a capacity w is its Möbius
transform mw (see Equation 1.4). The coefficients mw(S), called Möbius masses, can be
positive or negative and completely characterize w since we have w(S) = ∑

T⊆Smw(T ).
The latter formula highlights coefficients mw(T ), T ⊆ S as positive or negative contri-
butions to the overall importance w(S) of the group S, and shows that Möbius masses
add up to 1 since ∑S⊆N mw(S) = w(N) = 1. The following proposition establishes that,
by design, the Möbius transform of a capacity has always less non-null coefficients than
the capacity itself, making it a suitable option for obtaining sparse representations of
capacities.

Proposition 2.4. For any capacity w, we have that ||mw||0 ≤ ||w||0, where ||.||0 denotes
the ℓ0-norm, i.e., the number of non-zero coefficients.

Proof. Consider a capacity w and its Möbius transform mw. If w(S) = 0 for some S ⊆ N ,
then by monotonicity w.r.t. set inclusion, w(T ) = 0 for all T ⊆ S. Hence, by definition
of the Möbius transform (see Equation 1.4), mw(S) = ∑

T⊆S(−1)|S\T |w(T ) = 0. Then
{T ⊆ N |w(T ) = 0} ⊆ {T ⊆ N |mw(T ) = 0} and ||w||0 = 2n− 1− |{T ⊆ N |w(T ) = 0}| ≥
2n − 1− |{T ⊆ N |mw(T ) = 0}| = ||mw||0.

Another alternative representation of a capacity w is its Interaction index transform
Iw (see Equation 1.6). However, the following result shows that the representation of w in
terms of interaction Iw may lack of compactness, in particular when w is a belief function
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[Dempster, 1967, Shafer, 1976], i.e., when mw is non-negative.

Proposition 2.5. Let w be a capacity and mw and Iw its Möbius and interaction index
representations respectively. If mw is non-negative, then ∥Iw∥0 ≥ 2t∗ − 1 where t∗ is the
largest size of set T such that mw(T ) > 0.

Proof. The interaction index Iw is linked to mw by the following equation: Iw(S) =∑
T⊇S

1
|T |−|S|+1mw(T ) for all S ⊆ N (see Table 1.2). Hence, for any T s.t. mw(T ) > 0,

we have Iw(S) > 1
|T |−|S|+1mw(T ) > 0 for all S ⊆ T . Let T ∗ be a subset of maximal

cardinality among those such that mw(T ) > 0 and denote by t∗ its cardinal, then the
2t∗ − 1 subsets of T ∗ (excluding the empty set) have a positive interaction index. Hence,
∥Iw∥0 ≥ 2t∗ − 1.

From Proposition 5, if w is a belief function, the number of non-zero coefficients in
the interaction index representation increases exponentially with the size of the largest
set with non-zero Möbius mass. This is illustrated in the following example.

Example 2.3. Let w be the capacity such that for any S ⊂ N , w(S) = ϵ|S|/n for
0 < ϵ < 1 and w(N) = 1. First, remark that this capacity, which has 2n − 1 non-null
coefficients, admits a sparse Möbius transform mw that equals 0 everywhere except for the
singletons where mw(S) = ϵ/n and for the grand coalition where mw(N) = 1− ϵ. Then,
by Proposition 5, since N is the largest set with non-null Möbius mass, the interaction
index representation of w admits 2n − 1 non-null coefficients and thus is as dense as w.
The Choquet integral associated with capacity w is the following simple decision model:

hϵ(z) = ϵ

n

n∑
i=1

zi + (1− ϵ) min
i∈N
{zi} (2.11)

This decision model corresponds to an egalitarist attitude in the aggregation (i.e., focusing
on the worst marginal value) refined by an utilitarist criterion (i.e, using the sum of
marginal utilities) to break ties. In the following, this model is referred to as the ϵ-min
model.

Remark 2.4. Belief functions have been particularly studied in the theory of evidence
(also known as Dempster-Shafer theory [Dempster, 1967, Shafer, 1976]) where they are
used to represent and reason about uncertainty. In this framework, the Möbius transform
is regarded as a probability distribution (or belief mass distribution) over the subsets of
N , and subsets with positive mass, i.e., such that mw(S) > 0, are referred to as a focal
elements (see also [Grabisch, 2016c]).
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Hence, the Möbius representation appears better suited to provide a sparse repre-
sentation of the capacity than the interaction index representation (or the capacity itself).
Below, we recall the Choquet integral formulation in terms of Möbius masses :

Cw(z) =
∑
S⊆N

mw(S) min
i∈S
{zi} (2.12)

This formulation highlights an additional benefit of sparse Möbius transforms by
suggesting that Cw(z) admits a very simple form when mw is sparse, composed of con-
junctive or disjunctive terms mw(S) mini∈S{zi} (depending on the sign of the Möbius
mass mw(S)). For instance, the ϵ-min model (see Equation 2.11) only involves a unique
conjunctive term that is the minimum of all marginal utilities and a linear term, since the
unique non-null masses are located on N and the singletons. Another example is given
below for decision-making under uncertainty:

Example 2.4. Let us consider again the Ellsberg’s urn example (see Example 2.1). Re-
call that we consider an urn containing 90 balls including 30 red, and 60 blue or yellow
balls in unknown proportion and four bets: on the one hand x (resp. y) yielding 100$
if the drawn ball is red (resp. blue), and on the other hand z (resp. t) yielding 100$ if
the drawn ball is not blue (resp. not red). Here N = {R,B, Y } for red, blue, yellow,
and the acts under consideration are x = (100, 0, 0), y = (0, 100, 0), z = (100, 0, 100) and
t = (0, 100, 100).

As evidenced in Example 2.1, preferences x ≿ y and z ≺ t are representable by
a Choquet integral associated with the capacity yielding the lower possible probability of
the event according to our knowledge of the urn content, i.e., w({R}) = 1/3, w({B}) =
w({Y }) = 0, w({R,B}) = w({R, Y }) = 1/3, w({B, Y }) = 2/3 and w({R,B, Y }) = 1.
Then, we remark that this capacity admits a sparse Möbius transform which equals every-
where 0 except that m({R}) = 1/3 and m({B, Y }) = 2/3, yielding a simple Choquet inte-
gral formulation fitting the observed preferences: Cw(z1, z2, z3) = z1/3 + 2 min{z2, z3}/3.
Note that w is a belief function and the events {R} and {B, Y } are the focal elements
(see Remark 2.4).

Sparse Möbius transforms are commonly employed for controlling the complexity
of the Choquet integral [Grabisch and Labreuche, 2010, Hüllermeier and Tehrani, 2013].
Indeed Möbius masses are frequently required to vanish for all subsets of viewpoints larger
than a given k < n. In this case, the resulting capacity is said to be k-additive [Grabisch,
1997b]. For instance, when the capacity is 1-additive then all Möbius masses are null
except for some singletons (at least one) where they are positive due to monotonicity. In
this case, Equation 2.12 shows that the Choquet integral boils down to a simple weighted
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sum.
Considering only 2-additive capacities is a standard option to allow pairwise in-

teractions while keeping a sparse model. One may also wish to relax 2-additivity for
k-additivity (2 < k < n) with the aim of finding a better tradeoff between sparsity and
expressivity. However, reasoning about sparsity in terms of k-additivity is a drastic reduc-
tion that may significantly impact our ability to fit preference data with relevant Choquet
integral models. It may indeed happen that very sparse but still n-additive capacities are
necessary to describe preference data, as shown hereafter:

Example 2.5. Let us consider again the ϵ-min model hϵ (see Equation 2.11). Recall
that hϵ is an instance of the Choquet integral associated with a Möbius transform mw

that is everywhere 0 excepted on singletons and on N (mw({i}) = ϵ/n for all i ∈ N and
mw(N) = 1− ϵ). As the most important Möbius mass is located on the grand coalition N ,
preferences induced by hϵ could not be properly described by any k-additive capacity with
k < n despite the fact that mw can be closely approximated by a sparse Möbius transform
involving a single non-null Möbius mass (attached to N).

This shows that new approaches are needed to find sparse representations of ca-
pacities that best fit observed preferences, regardless of k-additivity. In the following, we
propose a general approach to learn sparse Möbius representations of capacities allowing
to derive simple instances of the (bi-)CIU model that best fit preference data.

2.2 Sparse Möbius Learning with ℓ1-regularization

Our objective is to find a capacity w with as many zero Möbius masses as possible
and such that Cw accurately describes a given set of preference examples. To this end,
we formulate a regularized empirical risk minimization (RERM) problem (see Definition
1.21) using ℓ1-regularization (see Section 3.1.3) over the Möbius transform of w.

More precisely, the aim here is to fit preference examples with a simple model while
exploiting the descriptive advantage of the Choquet integral over the standard weighted
sum model. The basic model is therefore the weighted sum including all singletons,
and then the objective is to include as few interaction terms as possible, through a ℓ1-
regularization of the Mobius mass vector focusing only on the Mobius masses of subsets
of size larger than 1. Such a regularization allows exploring the trade-off between model
simplicity and error on the preference examples by progressively increasing the weight of
the regularization term, until obtaining a linear model.

Besides, an important question arises: how significant is the selection of interaction
terms obtained with ℓ1-regularization? Indeed, the Möbius mass selection performed by
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the ℓ1-regularization might be impacted by the structural dependence that exists between
the quantities of type mini∈S{zi}, S ⊆ N , involved in Cw (Equation 2.12). In particu-
lar, by taking a statistical view of the learning problem, we will see that the correlation
between these quantities can harm the ability of the ℓ1-regularization to select the inter-
action factors properly. We thus propose to use a standard approach to correct this issue
(known as adaptive ℓ1-regularization [Zou, 2006]) that consists of using a weighted ℓ1-
regularization with weights derived from preference data. For the sake of clarity, we first
present the standard version of the ℓ1-regularized learning problem (Subsection 2.2.1) and
shed light on its limitations in selecting the relevant Möbius masses. A more sophisticated
version using a weighting system is then presented in Subsection 2.2.2.

2.2.1 ℓ1-regularization on the Möbius Transform

Let us consider a set of preference statements {(zℓ, z′ℓ)}ℓ∈P and a set of indifference
statements {(zℓ, z′ℓ)}ℓ∈I over pairs of marginal utility vectors (zℓ, z′ℓ) ∈ [a, b]2, where for
any ℓ ∈ P , zℓ ≿ z′ℓ and for any ℓ ∈ I, zℓ ∼ z′ℓ. The error made with Cw on example
(zℓ, z′ℓ) is computed with the pref-hinge loss (see Definition 1.28) with δ = 0, i.e.:

l(Cw(zℓ), Cw(z′ℓ)) =

|Cw(zℓ)− Cw(z′ℓ)| if ℓ ∈ I

(Cw(z)− Cw(z′))− if ℓ ∈ P
(2.13)

Then, the RERM problem with ℓ1-regularization over the Möbius masses vector
restricted to the interaction subsets (subsets of size strictly larger than 1), is formulated
as follows:

(P) min
w

∑
ℓ∈I
|Cw(zℓ)− Cw(z′ℓ)|+

∑
ℓ∈P

(Cw(zℓ)− Cw(z′ℓ))− + λ
∑

S⊆N,|S|>1
|mw(S)|

∑
T⊆S,T∋imw(T ) ≥ 0, ∀S ⊆ N, ∀i ∈ S (2.14)∑
S⊆N mw(S) = 1 (2.15)

where λ is a nonnegative hyper-parameter that controls the level of regularization. Con-
straints 3.28 and 3.29 respectively ensure the monotonicity of the capacity w.r.t. set
inclusion and its normalization. Monotonicity of the capacity can indeed be guaranteed
by asking that for any viewpoints coalition S ⊆ N , removing a viewpoint i ∈ S can-
not increase the capacity value, i.e., w(S) ≥ w(S \ {i}), which translates in terms of
mw by Constraint 3.28 using w(S) = ∑

T⊆Smw(T ). The latter formula also shows that
constraint 3.29 is equivalent to w(N) = 1.
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2.2.2 Interaction Selection Quality

In the optimization problem P , the ℓ1-penalty allows sparse representations of ca-
pacities to be obtained by shrinking Möbius masses mw(S) towards zero (the intensity
of the shrinkage depending on the level of regularization). Then, a selection of the view-
points interactions that actually play in the model is performed. As a consequence, it is of
prime importance to assess the quality of such a selection. In what follows, by leveraging
statistical learning results, and in particular the notion of variable-selection consistency
and general sign consistency, we provide theoretical insights justifying the need for a more
sophisticated ℓ1-regularization to perform qualitative selection of interaction viewpoints.

Capacity learning is a linear regression problem In order to make explicit a pos-
sible issue in the interaction selection performed by ℓ1-regularization, let us consider a
special case of Problem P wherein the database of learning examples is only made of
indifference statements with specific pairs of examples (zℓ, z′ℓ), ℓ ∈ I, chosen in such a
way that z′ℓ has a constant marginal utility vector (i.e., z′ℓ

i = yℓ for all i ∈ N for some
yℓ ∈ R). In such a case we have Cw(z′ℓ) = yℓ whatever the capacity w. Therefore the
indifference zℓ ∼ z′ℓ translates into the constraint Cw(zℓ) = yℓ. Hence, Problem P boils
down to a regression problem with the Choquet integral model Cw using data points
{(zℓ, yℓ)}tℓ=1, where t is the number of examples. Such a dataset could be alternatively
obtained by directly collecting global evaluations yℓ of marginal value vectors zℓ. In this
setting, with the monotonicity constraints set aside, the learning problem reduces to the
following regression problem:

min
w

t∑
ℓ=1
|Cw(zℓ)− yℓ|+ λ

∑
S⊆N,|S|>1

|mw(S)| (2.16)

This optimization problem falls into the category of linear regression problems with
ℓ1-regularization and absolute loss (i.e., ℓ(y, ŷ) = |ŷ − y|). Indeed, denoting βj = mw(Sj)
and ϕj = mini∈Sj

{zi} (where Sj is the jth subset of N in the lexicographical order)
Equation 2.12 presents Cw as a linear aggregator within a specific feature space of size
d = 2n − 1, i.e.:

Cw(z) =
d∑
j=1

βjϕj (2.17)

Often referred to as LAD-LASSO (where LAD stands for least absolute deviation
because of the absolute loss) [Wang et al., 2007, Gao and Huang, 2010], ℓ1-regularized
linear regression with the absolute loss has been extensively studied in the statistical
learning literature and, in particular, its properties concerning variable selection are now
well understood. Here, we propose to leverage the notion of variable-selection consis-
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tency and general sign consistency for assessing the quality of the interaction selection
performed by ℓ1-regularization within the Choquet integral.

Variable-selection consistency A way to assess the quality of coefficient selection in
the sparse learning of a linear model1 y = ∑d

j=1 βjϕj from regression examples {ϕℓ, yℓ)}tℓ=1

is to adopt a statistical view of the learning problem, assuming that the data is such that
yℓ = ∑d

j=1 β
∗
jϕ

ℓ
j + ϵℓ, ℓ = 1, . . . , t, where (ϵ1, . . . , ϵt) is a vector of i.i.d. centered random

variables, and β∗ ∈ Rd embodies a ground truth model. This ground truth model is
further assumed to be sparse in the sense that some of its components are zero. Non-null
components indices are listed in A1 = {j|β∗

j ̸= 0} while null components indices are listed
in A2, i.e., A2 = {j|β∗

j = 0}. Finally, without loss of generality, the data is assumed to
be centered and normalized i.e., 1

t

∑t
ℓ=1 ϕ

ℓ
j = 0 and 1

t

∑t
ℓ=1(ϕℓj)2 = 1, j = 1, . . . , d.

Let β̂t(λ) be a model learned from such data using a RERM problem with a sparsity
-inducing regularization with hyper-parameter λ. Then, in this setting, assessing the
variable selection performed by the learning method amounts to asking the question: “is
β̂t(λ) guaranteed to recover with high probability the set A1 of relevant variables if provided
with a large amount of data t and the proper amount of regularization λ?”. If the answer
is yes, then the learning method is said to be variable-selection consistent [Zhao and Yu,
2006, Hastie et al., 2015b]. A stronger property is the general sign consistency, which
guarantees that not only the coefficient of A1 are recovered but the sign of the estimated
coefficients coincides with those of the ground truth model [Zhao and Yu, 2006, Gao and
Huang, 2010]. This property can be formally formulated as follows:

Definition 2.5 (general sign consistency). An estimator β̂t(λ) is general sign con-
sistent if:

lim
t→∞

P(∃λ ≥ 0, sign(β̂t(λ) = sign(β∗)) = 1

where for any vector β, sign(β) refers to its sign vector, i.e., sign(β)j = 1 if βj > 0,
sign(β)j = −1 if βj < 0 and sign(β)j = 0 otherwise.

In words, an estimator β̂t(λ) is general sign consistent if the probability of the
existence of a λ value for which it correctly affects signs to coefficients goes towards 1
as the number of examples approaches infinity. The question of whether LAD-LASSO is
general sign consistent has been addressed and negative results have been provided in the
setting where features are highly correlated with each other [Gao and Huang, 2010].

1Here ϕj represents a general feature in a linear regression problem
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The irrepresentable condition It is known that, under mild assumptions, a necessary
condition for LAD-LASSO to be general sign consistent is the (weak) irrepresentable
condition (IC) [Gao and Huang, 2010]. More precisely, let Φt be the design matrix, i.e.,
the matrix of size t×d containing the feature observations ((ϕℓ1, . . . , ϕℓd))tℓ=1. Then, let Φj

t

be the jth column of Φt, and let Φ1
t and Φ2

t be the submatrices containing the columns
indexed by j ∈ A1 and j ∈ A2, respectively. Also, let Σt denote 1

t
Φ⊤
t Φt the sample

correlation matrix and assume Σt converges to a positive definite matrix Σ when t→∞.
Finally denote by Σ11

t the sub-matrix of Σt containing the correlations between variables
in A1, i.e., Σ11

t = 1
t
(Φ1

t )⊤Φ1
t , and denote by Σ21

t the sub-matrix of Σt containing the
correlations between variables in A2 and A1, i.e., Σ21

t = 1
t
(Φ2

t )⊤Φ1
t .

Definition 2.6 (weak irrepresentable condition (IC)). Assuming Σ11
t is invertible,

the (weak) IC condition reads as follows:

|Σ21
t (Σ11

t )−1 sign(β∗
A1)| < 1 (2.18)

where 1 = (1, . . . , 1) is a vector of size |A2| and the inequality holds element-wise.

Such a condition means that when irrelevant variables (A2 variables) are too cor-
related with the relevant variables (A1 variables), LAD-LASSO does not satisfy general
sign consistency. A way to see it is to observe that Condition 2.18 always holds if A2

variables are not correlated with A1 variables (i.e., Σ21
t is null). Alternatively, we can

observe that Condition 2.18 for sign(β∗
A1) = 1 reduces to ∥(Φi

t)⊤Φ1
t ((Φ1

t )⊤Φ1
t )−1∥1 < 1,

for any i ∈ A2. This latter condition is equivalent to saying that if we were regressing an
irrelevant variable i ∈ A2 on all the relevant variables j ∈ A1(using least square linear
regression), the ℓ1-norm of the obtained coefficient vector should be less than 1. Indeed,
recall that the solution of arg minβ ∥Φi

t − Φ1
t β∥2

2 is given by β̂ = ((Φ1
t )⊤Φ1

t )−1(Φ1
t )⊤Φi

t =
((Φi

t)⊤Φ1
t ((Φ1

t )⊤Φ1
t )−1)⊤.

Therefore, if an irrelevant variable is too correlated with the variables associated
with non-null ground truth coefficients, LAD-LASSO may fail to distinguish it from
the latter relevant variable, regardless of the amount of data at hand or the level of
regularization applied. Note that a similar result [Zhao and Yu, 2006, Zou, 2006] is also
available for least square ℓ1-penalized linear regression (also known as LASSO regression
[?Hastie et al., 2015b]).

In the following, we show that these results allow us to highlight potential issues
when performing Möbius masses selection with ℓ1-regularization.
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Figure 2.5: Sample correlation between ϕS1 and ϕS2 (right) and R ratio (left).

The case of the Choquet integral In the case of the Choquet integral, the feature
space is endowed with a very specific correlation structure. Indeed, features are indexed
over subsets S ⊆ N and for any pair of criteria coalition S1, S2 ⊆ N such that S1∩S2 ̸= ∅,
ϕS1 = mini∈S1{zi} and ϕS2 = mini∈S2{zi} are obviously statistically correlated due to
the overlapping of the coalitions. Intuitively, the correlation is all the more important
that the cardinal of the intersection is close to the cardinal of the union. This is well
illustrated in Figure 2.5 that compares the ratio R = |S1∩S2|/|S1∪S2| for any S1, S2 ⊆ N

(right handside) and the empirical correlation between mini∈S1{zi} and mini∈S2{zi} (left
handside) when utilities zi, i = 1, . . . , n are independent random variables distributed
according to a uniform distribution within [0, 1]. The number of criteria n is taken equal
to 8 and for any i ∈ N , i.i.d. utility samples (zℓi )tℓ=1 of size t = 1000 are simulated to
compute the empirical correlations.

In Example 2.6, we show that this correlation structure undermines the respect of
Condition 2.18, and thus the ability of LAD-LASSO to recover a sparse ground truth
model.

Example 2.6. Let us consider the ϵ-min CIU model (see Definition 2.11) for n = 3,
i.e.:

y = ϵ

3(z1 + z2 + z3) + (1− ϵ) min
i∈N
{zi}

This model can be identified to the model y = ∑
S⊆N ϕSβ

∗
S with β∗

S = ϵ/3 for S such
that |S| = 1, β∗

N = 1− ϵ, and β∗
S = 0 otherwise. Then the indices of the non-null coeffi-

cients in the ground truth model are A1 = {{1}, {2}, {3}, N}, A2 = {{1, 2}, {1, 3}, {2, 3}}
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and sign(β∗
A1) = 1. Suppose that the utilities zi, i = 1, 2, 3 are independent random

variables distributed according to a uniform distribution within [0, 1]. Let ρs12
s1,s2 be the

correlation between ϕS1 and ϕS2 for any S1, S2 ⊆ N such that |S1| = s1, |S2| = s2,
|S1 ∩ S2| = s12, i.e., ρs12

s1,s2 = Cov(ϕS1 , ϕS2)/
√

Var(ϕS1) Var(ϕS1). Then, the correlation
matrix Σ11 and Σ21 are given by:

Σ11 =



1 0 0 ρ1
1,3

0 1 0 ρ1
1,3

0 0 1 ρ1
1,3

ρ1
1,3 ρ1

1,3 ρ1
1,3 1


, Σ21 =



ρ1
1,2 ρ1

1,2 0 ρ2
2,3

ρ1
1,2 0 ρ1

1,2 ρ2
2,3

0 ρ1
1,2 ρ1

1,2 ρ2
2,3



Then if 1 − 3(ρ1
1,3)2 ̸= 0, Condition 2.18 boils down to (see Proposition 7.9 in Appendix

A.2):
|2ρ1

1,2(1− ρ1
1,3) + ρ2

2,3(1− 3ρ1
1,3)| < |1− 3(ρ1

1,3)2| (2.19)

Using analytical formulas for Cov(ϕB1 , ϕB2) provided in Proposition 7.10 in Appendix
A.2, we have ρ1

1,2 =
√

3
2
√

2 , ρ
1
1,3 = 1√

5 , ρ
2
2,3 = 4√

30 . Therefore, Condition 2.19 is equivalent to
3+

√
5

5
√

6 < 2
5 , which is false, and thus Condition 2.18 is violated.

The violation of Condition 2.18 in Example 2.6 suggests some weaknesses of the
ℓ1-regularizations in terms of viewpoints interaction selection. In order to circumvent
this issue, we investigate the benefit of an adaptive ℓ1-penalty, i.e., a weighted ℓ1-penalty
with data-dependent weights.

Remark 2.5. In the previous analysis marginal utilities (z1, . . . , zn) have been assumed to
be statistically independent to asses the sole impact of the structural dependence between
features ϕS, S ⊆ N due to set inclusions. Taking into account the correlation between
marginal utilities would only increase correlations between relevant and irrelevant features
and undermine the satisfaction of Condition 2.18. Additionally, note that the correlation
between features ϕS, S ⊆ N has also been highlighted as a potential source of numerical
instabilities when learning the Choquet integral [Tehrani and Ahrens, 2017].

2.2.3 Learning Möbius Masses with Adaptive ℓ1-regularization

The adaptive ℓ1-regularization is a regularization of the form ∑
j λj|βj| where the

weights λj are data-dependent and adapted to each coefficient βj, implying a two-stage
algorithm where the first step is the weights computation. It has been introduced to cor-
rect LASSO and LAD-LASSO and guarantee better variable selection properties [Zou,
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2006, van de Geer, 2010, Xu and Ying, 2010, Zheng et al., 2017, Wu et al., 2022]. The
underlying idea is that if the weights λj contain information about the relative relevance
of the variables, it allows for less regularization on relevant variables and more regular-
ization on less relevant variables, thereby mitigating the blurriness between relevant and
irrelevant variables due to correlation.

In particular, when the weights are the reciprocals of absolute values of the coef-
ficients obtained with a ridge regression (i.e., ℓ2-regularized least square regression) the
adaptive LASSO is known to be variable-selection consistent [Zou, 2006]. Therefore, we
propose to use this two-stage penalty in the learning of capacities from sets of preference
and indifference examples {(zℓ, z′ℓ)}ℓ∈P and {(zℓ, z′ℓ)}ℓ∈I . It yields the following learning
problem:

(P ′) min
w

∑
ℓ∈I
|Cw(zℓ)− Cw(z′ℓ)|+

∑
ℓ∈P

(Cw(zℓ)− Cw(z′ℓ))− +
∑

S⊆N,|S|>1
λS|mw(S)|

s.t. 3.28, 3.29

The weights used in the regularization are defined by λS = λ/(|m̂w(S)|+ ϵ) for any
S ⊆ N (ϵ > 0 being introduced to avoid numerical instabilities), where m̂w is the optimal
solution of the ℓ2-regularized preference learning problem, given below:

(P ′
0) min

w

∑
ℓ∈I
|Cw(zℓ)− Cw(z′ℓ)|+

∑
ℓ∈P

(Cw(zℓ)− Cw(z′ℓ))− + λ0∥mw∥2
2

s.t. 3.28, 3.29

Note that λ0 is an additional nonnegative regularization hyper-parameter control-
ling the level of ℓ2-regularization in the first step.

Then, for both problems P ′
0 and P ′, we introduce auxiliary variables ϵ+

ℓ , ϵ
−
ℓ ( resp.

ϵℓ) to linearize the indifference violations |Cw(zℓ) − Cw(z′ℓ)| (resp. preference violations
(Cw(zℓ)−Cw(z′ℓ))−), as well as variables aS, bS to linearize the quantities |mw(S)| involved
in the objective function of problem P ′ (see Remark 2.2 for detail on linearization of
absolute values). Additionally, since Cw(zℓ) = ∑

S⊆N mw(S) mini∈S{zℓi} by Equation
2.12, we have Cw(zℓ)− Cw(z′ℓ) = ∑

S⊆N mw(S)∆ℓ
S with ∆ℓ

S = mini∈S{zℓi} −mini∈S{z′ℓ
i }.
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Therefore, problem P ′ reduces to the following linear program:

min
∑
ℓ∈I

(ϵ+
ℓ + ϵ−

ℓ ) +
∑
ℓ∈P

ϵℓ +
∑

S⊆N,|S|>1
λS(aS + bS)

∑
S⊆N(aS − bS)∆ℓ

S + ϵ+
ℓ − ϵ−

ℓ = 0, ℓ ∈ I (2.20)∑
S⊆N(aS − bS)∆ℓ

S + ϵℓ ≥ 0, ℓ ∈ P (2.21)∑
T⊆S,T∋i aT − bT ≥ 0, ∀S ⊆ N,∀i ∈ S (2.22)∑
S⊆N aS − bS = 1 (2.23)

ϵ+
ℓ , ϵ

−
ℓ , ϵℓ, aS, bS ≥ 0

Equations 2.20 and 2.21 correspond to the constraints induced by the indifference
and preference examples, while constraints 2.22 and 2.23 respectively impose the mono-
tonicity and the normalization of the capacity. Note that Möbius masses are recovered
by mw(S) = aS − bS and that weights λS need to be priorly computed by solving P ′

0,
which reduces to a quadratic program after linearization of the indifference and preference
violations.

In order to derive a similar optimization problem for the learning of model bi-CIU,
let us reformulate BCw,w′ from the Möbius transforms of capacities w and w′. From
Definition 1.14 and Equation 2.12, if marginal utilities are valued in [−1, 1] where 0 is
the neutral level, we have:

BCw,w′(z) =
∑
S⊆N

mw(S) min
i∈S
{z+

i }+
∑
B⊆N

mw′(S) min
i∈S
{−z−

i }

=
∑
S⊆N

mw(S) min
i∈S
{z+

i } −
∑
S⊆N

mw′(S) max
i∈S
{z−

i } (2.24)

Using Equation 2.24, we formulate the problem of learning sparse representations
of the capacities w and w′ in bi-CIU as follows:

min
∑
ℓ∈I

(ϵ+
ℓ + ϵ−

ℓ ) +
∑
ℓ∈P

ϵℓ +
∑

S⊆N,|S|>1
(λwS (aS + bS) + λw

′

S (cS + eS))

∑
S⊆N((aS − bS)∆ℓ

S − (cS − eS)∇ℓ
S) + ϵ+

ℓ − ϵ−
ℓ = 0, ℓ ∈ I∑

S⊆N((aS − bS)∆ℓ
S − (cS − eS)∇ℓ

S) + ϵℓ ≥ 0, ℓ ∈ P∑
T⊆S,T∋i(aT − bT ) ≥ 0, ∀S ⊆ N,∀i ∈ S∑
T⊆S,T∋i(cT − dT ) ≥ 0, ∀S ⊆ N, ∀i ∈ S∑d
j=1(aS − bS) = 1∑d
j=1(cS − eS) = 1

ϵ+
S , ϵ

−
S , ϵℓ, aS, bS, cS, eS ≥ 0
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where ∆ℓ
S = mini∈S{(zℓi )+}−mini∈S{(z′ℓ

i )+} and ∇ℓ
S = maxi∈S{(zℓi )−}−maxi∈S{(z′ℓ

i )−}.
The weights (λwS ,λw′

S ) are computed beforehand with a quadratic program similar to P ′
0

but using a double ℓ2-regularization λ0(∥mw∥2
2 + ∥mw′∥2

2).
Note that another weighting system based on the cardinality of factors has been

used in Choquistic regression problems to favor the selection of small-size factors [Tehrani
and Hüllermeier, 2013]. However, this choice may prevent to recover preference systems
where large coalitions are essential. For instance, this is the case of the ϵ-min model
(see Equation 2.11). This is also the case of the so-called Hurwicz model [Hurwicz, 1951]
based on a convex combination of min and max factors taken on the grand coalition N ,
i.e., hα(z) = αmini∈N{zi}+ (1− α) maxi∈N{zi} for any α ∈ [0, 1].

Remark 2.6 (Elastic Net). Another possible variant of standard ℓ1-regularization in the
context of correlated variables is the Elastic Net [Zou and Hastie, 2005]. This penalty is
defined as a convex combination of ℓ1 and ℓ2 penalties: λ∥mw∥1 + λ0∥mw∥2

2. However,
this method tends to jointly select correlated features with uniformed coefficient values
(grouping effect) as observed in [Zou and Hastie, 2005]. This property is not desirable
in our context. For instance, in the ϵ-min model (see Equation 2.11), the importance
of mw(N) in the ground truth model may thwart the elimination of sets having a large
intersection with N . This is confirmed by our tests. In Section 3, we will show that
adaptive ℓ1-penalty significantly outperforms both the standard ℓ1-regularization and
the Elastic Net penalty.

3 Numerical Tests

In this section we show the results of numerical experiments on synthetic and real-
world preference data and we illustrate the advantage of our approach over some baseline
methods. All tests are conducted on a 2.8 GHz Intel Core i7 processor with 16GB RAM
and optimization tasks are performed using the mathematical programming solver Gurobi
(version 9.1.2).

3.1 Synthetic data

Model generation Random CIU (or bi-CIU) models with sparse Möbius representation
are created through the generation of n (or one for the DMU setting) marginal utility
functions ui and a capacity (or two for bi-CIU) admitting a sparse Möbius representation.

- Marginal utility functions are modeled as non-decreasing splines defined over conse-
quence sets of the form Xi = [0;M ] using a basis of I-spline functions of size m = 10
associated with a regular subdivision of [0;M ] (see Section 1.1.1 for more details
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on I-spline functions). Then, random marginal utility functions are generated by
uniformly drawing I-spline basis coefficients α in the m-dimensional simplex. Note
that we use here cubic I-splines (k = 3) because they have matching first and second
derivatives while preserving a local influence of every component.

- Sparse Möbius masses are first generated without requiring for monotonicity by
generating sparse real-valued vectors of size 2n− 1 with components summing to 1.
Then, mw or (mw,mw′) are taken as the Möbius representations of the closest (in
the sense of the ℓ1-norm) monotonic capacities to these vectors (obtained by linear
programming).

Remark 2.7. Due to monotonicity constraints, the uniform generation of capacities (not
necessarily with sparse Möbius transform) is recognized as a difficult task for which
tractable algorithms are still needed [Havens and Pinar, 2017, Sun et al., 2023, Grabisch
et al., 2023].

For a given random CIU (resp. bi-CIU) model hUw (resp. hUw,w′), we generate learning
databases for learning the marginal utility functions and the capacity as detailed below.

Data generation for learning the marginal utility functions For learning the
marginal utility functions, we simulate Q-queries and their answers to construct databases
D of the form {(oℓ1, oℓ2, oℓ3)}Tℓ=1. More precisely, Q-queries are randomly generated by
random draws of their parameters, such as the initial consequence o1 and the reference
consequences R, r (see Proposition 2.1 and Proposition 2.2 respectively for the DMU
and MADM setting). Then, answers to these queries are obtained by simulating a DM
answering according to hUw . For instance, in the DMU setting, for a Q-query QS(o1|r, R),
we solve the equation hUw(ō2SR̄) = hUw(ō1Sr̄) and disturb the answer with some random
uniform noise ϵ ∈ [−ϵmax, ϵmax], i.e., o2 = u−1(u(o1) + [u(R)− u(r)]w(S̄)/(w(S̄)− 1) + ϵ).
Unless specified, the noise level ϵmax = 0.05 is used in the following.

Data generation for learning the Möbius transform of the capacity For the
capacity learning, we construct a database D = {(zℓ, z′ℓ)}ℓ∈P∪I of preference and indif-
ference statements over marginal value vectors compatible with hUw (or hUw,w′). For this,
pairs (zℓ, z′ℓ) are drawn uniformly within [0, 1]n (or [−1, 1]n in the case of bi-CIU). In
order to introduce noise, each pair example is associated with a preference statement
zℓ ≿ z′ℓ (i.e., ℓ ∈ P ) if (hUw(zℓ) + σℓz) − (hUw(z′ℓ) + σz′) ≥ σ and zℓ ∼ z′ℓ (i.e., ℓ ∈ I)
if |(hUw(zℓ) + σℓz) − (hUw(zℓ) + σℓz′)| < σ, where σℓz, σℓz′ are noise values uniformly drawn
within an interval [−σ, σ] (for CIU). Unless specified, the noise level σ = 0.03 is used in
the following.
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n 5 6 8

training set size 100 120 250

Table 2.1: Size of the training preference dataset w.r.t. the number of viewpoints n.

This process is used to generate training datasets D of size |P |+ |I| which we vary
in our experiments depending on the number of viewpoints n following Table 2.1. Note
also that preference and indifference examples are in equal proportions. We also generate
test datasets (not used for the learning) to evaluate the generalizing performances of
the learned models. Test sets are always of size |P | + |I| = 1000. The generalizing
performance of any learned model h, is evaluated as the empirical error Remp(h|D) (see
Definition 1.20) with the pref-hinge loss (see Equation 2.13) on some test dataset D and
is referred to as the test error in the following.

3.2 Learning marginal utility functions

In this section, we conduct numerical tests to evaluate the methods proposed in
Section 1 for learning marginal utility functions within the CIU (or bi-CIU) model. We
first show numerical results for the learning method in the DMU setting (see Section
1.1.1), and then for the MADM setting (see Section 1.2.1). As we use synthetic data, the
learned marginal utility functions uα∗ (see Equation 2.3) are evaluated according to their
distance to the ground truth marginal utility functions u used to generate the synthetic
data. Referred to as ground truth distance and denoted by d(uα∗ , u), this distance is
computed as the average absolute difference between both functions on a discretization
of the consequence set [0,M ].

Learning the utility function in DMU First, a random CIU model is generated
with a unique marginal utility function u, and then Q-queries and their (noisy) answers
according to this model are generated using the generation procedure described in Section
3.1. Following the incremental procedure described in Algorithm 2.1, we increase the
learning database D until ρ is sufficiently reduced. The result of the learning process is
presented in Figure 2.6 for increasing size of learning database T = 4, 16, 32 (from left
to right). To illustrate the level of uncertainty associated with the learned function (red
plain line), the latter is displayed with the upper bound maxα∈Vδ(z∗) uα(o) and the lower
bound minα∈Vδ(z∗) uα(o) (blue dotted line) introduced in Subsection 1.1.2. The ground
truth utility function is represented in plain black. In this instance, u is already well
estimated with tight bounds for T = 32.

91



Chapter 2. Learning Sparse Preference Representations based on Choquet Integrals

Figure 2.6: Identification of the utility function uα for T = 4, 16, 32 (left to right).

Then, this experiment has been conducted for 1000 random CIU models. In Table
2.2, we show, as the number T of learning examples increases, the decrease of ρ and
the average ground truth distance of the learned function. Again, we observe that after
32 examples the utility function is correctly recovered as the ground truth distance is
vanishing in average over the 1000 simulations.

T = 4 T = 16 T = 32

ρ 0.687 0.124 0.072

d(u, uα∗) 0.354 0.024 0.004

Table 2.2: Average ρ and d(u, uα∗) w.r.t the number of constraints T .

Learning the marginal utility functions in MADM We now illustrate the method
for learning the marginal utility functions within CIU in the MADM setting (see Section
1.2.1). In these tests, the objective is to compare our method to the elicitation method
relying on standard sequences in terms of noise robustness. For the latter method, the
final function is taken as a cubic I-spline interpolation of the points obtained with the
standard sequence. Below, we illustrate the learning process for any i ∈ N

First, a random bi-CIU model is generated and then Q-queries and their (noisy)
answers according to this model are generated using the generation procedure described in
Section 3.1. Figure 2.7 displays the learned marginal utility functions for our method (red
dashed line) and the standard sequence method (green and blue points), along with the
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ground truth ui (black plain line). On the left, the estimation provided by our method
perfectly matches the ground truth while on the right the estimation of the standard
sequence clearly suffers from noise distortion. We conducted the same experiment on 10
random bi-CIU models, and obtained an average ground truth distance of 0.084± 0.052
for the standard sequence method and of 0.022± 0.008 for our approach.

Additionally, on Figure 2.8 we represent the ground truth distance (i.e., d(u, uα∗))
in average over 10 simulations (with standard errors) for both methods, as a function
of the number of queries asked, for varying noise in the query answers. More precisely,
Figure 2.8 shows the case ϵmax = 0.05 on the left and ϵmax = 0.1 on the right, where
the results of the standard sequence method are in plain black and our results are in
dotted pink. The test confirms that long standard sequences constructed by chaining
answers to preference queries lead to very poor results. Also, the difference between both
graphs shows the impact of the increase of noise intensity on the estimation quality for
both method. However, one can see that regardless the level of noise, contrarily to the
standard sequence method, our approach converges to a vanishing ground truth distance.
It thus appears to be a more robust approach.

3.3 Learning Sparse Möbius Representations of Capacities

In this section, we first illustrate the process of learning a sparse Möbius represen-
tation of the capacity in the specific case where data is generated with the ϵ-min Choquet
integral instance (see Equation 2.11). Then, with other toy examples, we illustrate the
benefit of adaptive ℓ1-regularization in terms of viewpoint interaction selection. Finally,
we proceed to experiments demonstrating the benefits of our approach in the general case
of sparse synthetic data and real-world preference data.

For all methods, the regularization hyper-parameter λ is chosen by cross-validation
with the one-standard-error rule. Using a set of pre-selected λ values, cross-validation
consists of assessing the generalizing performances attached to each λ value by cutting

Figure 2.7: Learned function with our method (left) and standard sequences (right).
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Figure 2.8: Average ground truth distance w.r.t. the number of asked queries for ϵmax =
0.05 (left) and ϵmax = 0.1 (right).

the training set in folds and training the model as many times as the number of folds,
each time reserving a different fold for evaluating the model (validation fold). Then, the
one-standard-error rule consists in selecting λ as the highest value yielding an average
test error on the validation folds lower than the minimum average test error over all λ
plus the standard error associated with this minimum. This rule allows selecting the
highest amount of regularization (allowing for simpler models) among those that yield
minimal average test error. Here the number of folds is set to 3. Also, a grid search is
performed over the second hyper-parameter λ0 whenever it is needed (i.e., for adaptive
ℓ1-penalty and elastic net penalty defined in Remark 2.6).

3.3.1 Recovering the ϵ-min Model

We generate noisy preference data according to the ϵ-min model (see Equation
2.11) with n = 8 and different singletons weights, i.e., hϵ(z) = 1/n∑n

i=1 ϵizi + (1 −∑n
i=1 ϵi) mini∈N{zi} where (ϵ1, . . . , ϵn) = (0.03, 0.03, 0.05, 0.05, 0.02, 0.02, 0.05, 0.05). We

compare our method based on adaptive ℓ1-regularization to some baselines, such as the
standard ℓ1-regularization, the unpenalized regression and the use of 2-additivity con-
straints for an alternative control of model complexity.

In Figure 2.9 we illustrate the one-standard-error rule used to select the optimal
value λ∗ of the regularization hyper-parameter λ. On the left of Figure 2.9 we show the
average test error over the test folds for different values of λ, and λ∗ is highlighted (blue
star). One can observe (Figure 2.9 on the right) that the number of non-null coefficients
decreases as λ increases, and λ∗ corresponds to the optimal tradeoff between compactness
and generalizing performance. Note that here the second hyper-parameter λ0 is set to
λ0 = 0.05.
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Figure 2.9: Mean test error on the test folds (left) and ℓ0-norm of models (right) w.r.t.
λ.

In Figure 2.10 we show the learned Möbius masses (dashed red) for the adaptive
ℓ1-penalty with λ∗ (top left), the ℓ1-penalty also with optimal regularization parameter
λ (top right), the unpenalized regression (bottom left) and the use of 2-additivity con-
straints (bottom right). For each method, the learned model is superposed to the ground
truth model (ϵ-min model represented in gray). It is clear that the regression without any
penalty term fails to recover the ϵ-min model; it does not find any compact representation
either. It achieves, however, a reasonable generalizing performance on the test set (test
error of 0.066). The 2-additive model, while being compact, is far from the ground truth
and does not capture interactions involving a large number of attributes, leading to a
poor generalizing performance (test error of 0.535). Our approach combines both advan-
tages of the baselines: compactness and optimal generalizing performance (test error of
0.039). In fact, one can see that the ground truth model is exactly recovered. This is not
the case with the standard ℓ1-penalty that includes other coefficients than the non-null
ground truth coefficients in the estimated model. This directly illustrates the impact of
the violation of Condition ?? for the ϵ-min model, as demonstrated in Example 2.6 for
n = 3.

3.3.2 Benefit of Adaptive ℓ1-regularization : Another Illustrative Example

In this section, we provide a second illustration of the benefit of adaptive ℓ1-
regularization compared to standard ℓ1-regularization in terms of viewpoint interaction
selection. To this end, we consider a model (n = 6) including 5 interaction terms
attached to overlapping groups of viewpoints. The model is given by the following
Möbius masses vector: mw({i}) = ϵ

n
for any i ∈ N , mw(S) = 1−ϵ

5 for any S ∈
{{1, 2}, {1, 2, 3}, {1, 2, 3, 5, 6}, {1, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}} and mw(S) = 0 everywhere
else, with ϵ = 0.2.
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Figure 2.10: Learned models given in the lexicographical order and ground truth model.

We observe the effect of the increase of the hyper-parameter λ for both standard and
adaptive ℓ1-penalization. In Figure 2.11 and Figure 2.12 we represent the regularization
paths i.e., the evolution of the learned Möbius masses w.r.t λ, for both methods (for the
adaptive penalty we take λ0 = 1). The non-null coefficients of the ground truth model
are highlighted with blue star markers while the null coefficients are displayed with black
plain lines. At first glance, the standard ℓ1-penalization does not succeed to efficiently
distinguish ground truth non-null coefficients from null coefficients while the adaptive
penalization provides a clear distinction for λ ≈ 10−0.25. Note that for high values of λ,
the Möbius masses of singletons remain non-null for both methods. This is quite normal
since they are not included in the penalization term (the aim of regularization being only
to avoid unecessary non-linearities in the model).

In order to further evaluate and compare the quality of viewpoint interaction se-
lection in both methods we compute the false discovery rate (FDR), i.e., the proportion
of selected coefficients that are not actually in the ground truth model. We also com-
pute the false exclusion rate (FER) which is the proportion of not selected coefficients
that are actually in the ground truth model. Figure 2.13 shows the results for standard
(left) and adaptive (right) ℓ1-regularization according to λ. Contrarily to standard ℓ1-
regularization, adaptive ℓ1-penalty reaches 0% of FDR (gray plain line) and 0% of FER
(dashed red line) for λ ∈ [10−1.35, 10−1.1]. Thus adaptive ℓ1-penalty exactly recovers the
set of non-null ground truth coefficients. Standard ℓ1-regularization appears to be less
effective since the reduction of the false discovery rate comes at the expense of its false
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Figure 2.11: Regularization path for standard ℓ1-penalty.

Figure 2.12: Regularization path for adaptive ℓ1-penalty (λ0 = 1).

97



Chapter 2. Learning Sparse Preference Representations based on Choquet Integrals

Figure 2.13: FDR and FER for standard (left) and adaptive (right) ℓ1-penalty w.r.t. λ.

exclusion rate as shown in Figure 2.13 (left).

Stability study. In the previous tests, we assessed the ability of adaptive ℓ1-regulari-
zation to efficiently recover a ground truth model. Now, with another illustrative example,
we study the stability of the learned models w.r.t the variability of the training preference
data. We use a 5-dimensional CIU model with sparse Möbius transform and generate
training sets of preference examples with an increasing level of noise σ. In Figure 2.14 are
presented in boxplots the learned Möbius masses with adaptive ℓ1-regularization obtained
for 10 random generations of preference data. From top to bottom are represented the
results for increasing values of noise level σ ∈ {0, 0.03, 0.05, 0.1}. The ground truth
model is highlighted with grey bars. For σ = 0 (top), the exact ground truth model
is always recovered over the 10 simulations. Then, increasing the level of noise induces
some variability in the learned models. However, for σ = 0.03 (second from top), very
few coefficients that are not in the ground truth model are included in the learned model
and the ground truth coefficients are recovered with a nearly constant amplitude. Finally,
when the level of noise is high, i.e., σ = 0.1 (bottom), spurious coefficients such as the
grand coalition are included in the learned model and the Möbius masses values are highly
variable.

3.3.3 Comparative Performance on Arbitrary Sparse Models

We observed in Section 3.3.1 that CIU used with a 2-additive capacity can fail to
properly approximate preference data when the underlying preferences contains higher-
order interactions. Also, in Section 3.3.2, we observed that a more sophisticated ℓ1-
regularization is sometimes needed to proceed to a good model selection. In this section,
we provide broader tests on synthetic preference data and extend our comparisons to the
use of k-additive models for k = 1, . . . , n − 1, and for an optimal k∗ (chosen by cross-
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Figure 2.14: Learned Möbius masses for an increasing noise level from top to bottom.

validation). Also, we compare the adaptive ℓ1-penalty to different penalizations such as
the standard ℓ1-penalty and the elastic net (see Remark 2.6). We finally compare the
results of our method to the unpenalized regression method.

First, we generate 20 random CIU models and preference datasets for n = 8 (with
around 10 non-null coefficients in average). The test error of our approach (referred to as
ADA-L1) on test sets is averaged and displayed in Table 2.3 along with the average spar-
sity of the learned models (ℓ0-norm of the vector mw). The quality of the ground truth
model retrieval is further assessed with the average gap to the ground truth model com-
puted with the euclidean distance (i.e., ∥m̂w−m∗

w∥2
2) and the false discovery rate (FDR)

and false exclusion rate (FER). We also present the results for the baseline methods: the
standard ℓ1-penalty (L1), the elastic net penalty (E-Net), the unpenalized regression (No
reg.) and methods that use k-additivity constraints for k = 2, 4 and k∗ (obtained by
cross-validation). Our approach (ADA-L1) clearly outperforms all the methods in terms
of compactness, distance to the ground truth model and false discovery rate. Concerning
generalizing performance, ADA-L1 outperforms the methods based on k-additive mod-
els, especially for k = 2 which performs very poorly. The other regularization methods
(E-Net and L1) maintain competitive generalizing performance but incorporate non-null
ground truth coefficients in the model as the higher falser discovery rate and ℓ0-norm
suggest it. Note that, while having a generalizing performance close to the optimum, the
unpenalized regression (No Reg.) provides a dense model and thus is unable to recover
an underlying sparse model. As a consequence this method yields a null false exclusion
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Test error ℓ0-norm ∥m̂w −m∗
w∥2

2 FDR FER

ADA-L1 0.07 ± 0.02 16.1 ± 8.6 0.05 ± 0.06 0.74 ± 0.09 0.01± 0.01
L1 0.07 ± 0.01 25.1± 10.9 0.07± 0.10 0.82± 0.06 0.01± 0.01
E-Net 0.07 ± 0.02 27.3± 9.9 0.08± 0.12 0.83± 0.07 0.01± 0.01
No Reg. 0.09± 0.03 206.7± 27.1 1.57± 2.48 0.97± 0.02 0.00 ± 0.01
2-ADD 0.37± 0.18 21.9± 2.7 0.61± 0.49 0.95± 0.05 0.02± 0.01
4-ADD 0.13± 0.05 148.2± 4.8 0.45± 0.46 0.98± 0.02 0.02± 0.01
k∗-ADD 0.09± 0.03 147.0± 54.4 0.23± 0.24 0.97± 0.03 0.02± 0.02

Table 2.3: Evaluation of the learned CIU models on 20 simulations of synthetic data.

rate.
In Figure 2.15 we show the evaluations obtained for each method using both the

generalizing performance (test error) and the number of non-null Möbius masses (ℓ0-
norm). Each curve represents various possible tradeoffs between the test error and the
ℓ0-norm obtained for different values of the regularization hyperparameter λ (for ADA-
L1, L1, E-Net) or for different values of k (for k-ADD). For the methods ADA-L1 and
E-Net, λ0 has been priorely set to its best value. We observe that our approach with
adaptive ℓ1-penalty provides significantly better compromises than all the other methods.
Moreover, k-additive models perform very poorly, providing models with high ℓ0-norm
and high test error.

Figure 2.15: Tradeoff test error/ℓ0-norm depending on the method’s hyperparameter.

Finally, we conducted the same experiment with random bi-CIU models and the
results are presented in Table 2.4. The results for the learning of both capacities mw
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Test error ℓ0-norm ∥m̂w −m∗
w∥2

2 FDR FER

ADA-L1 0.06 ± 0.01 16.4 ± 12.9 2.06± 0.82 0.73 ± 0.11 0.02 ± 0.01
L1 0.07± 0.02 25.8± 15.8 2.07± 0.81 0.84± 0.06 0.02 ± 0.01

E-Net 0.07± 0.01 35.8± 16.7 1.15 ± 0.86 0.85± 0.04 0.02 ± 0.01
No Reg. 0.09± 0.02 217.1± 36.3 58.74± 117.65 0.98± 0.02 0.02 ± 0.01
2-ADD 0.30± 0.16 20.6± 3.8 2.55± 0.78 0.95± 0.06 0.02 ± 0.01
4-ADD 0.12± 0.05 243.9± 72.1 6.94± 5.97 0.98± 0.02 0.02 ± 0.02
k∗-ADD 0.09± 0.04 215.8± 141.5 13.03± 14.62 0.94± 0.07 0.02 ± 0.01

Table 2.4: Evaluation of the learned bi-CIU models on 20 simulations of synthetic data.

and mw′ are averaged producing a unique result. Here again ADA-L1 produces signif-
icantly better results than the other methods in terms of test error, compactness and
false discovery rate. Concerning distance to the ground truth, the elastic net penalty
provides slightly better results. Remark that all methods perform equally in terms of
false exclusion rate.

3.4 Real Data

In this subsection, we test our method for learning sparse Möbius capacity repre-
sentations on real preference datasets. For this, we use standard monotonic multicriteria
decision-making datasets containing overall evaluations of alternatives described by con-
tinuous or discrete criteria. Using these datasets, we make the assumption that the
learning examples are directly expressed in terms of marginal values.

We use the dataset Employee Selection (ESL) from the Weka repository 2, the
datasets CPU3 and Car MPG4 (MPG) from the UCI repository and the Movehub city
ranking5(CITY) dataset. Below, we briefly describe the four datasets:

• ESL: psychologists evaluations on n = 4 criteria of some candidates (488) and
overall suitability to a position.

• CITY: overall evaluations of quality of life in some cities (216) and n = 5 associated
descriptors, e.g., purchase power, quality and access to health care.

• CPU: relative performance of some CPUs (209) and n = 6 associated technical
characteristics, e.g., machine cycle time in nanoseconds, cache memory in kilobytes.

2https://www.openml.org
3https://archive.ics.uci.edu/dataset/29/computer+hardware
4https://archive.ics.uci.edu/dataset/9/auto+mpg
5https://www.kaggle.com/datasets/blitzr/movehub-city-rankings
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ESL CITY CPU MPG

ADA-L1 5.42 ± 2.38 6.14± 3.82 6.11 ± 1.83 7.69± 2.48
L1 5.73± 2.81 6.69± 4.29 7.81± 3.45 7.58 ± 2.8
E-Net 5.93± 2.93 6.99± 5.67 17.44± 13.16 23.44± 12.51
No Reg. 12.71± 1.60 23.26± 4.77 42.04± 9.15 55.83± 14.69
2-ADD 7.80± 1.19 9.09± 1.61 9.73± 1.84 8.21± 1.58
4-ADD 12.71± 1.60 22.58± 4.42 36.73± 7.47 36.54± 12.29
k∗-ADD 5.77± 2.77 5.97 ± 3.52 12.05± 9.94 12.79± 12.12

Table 2.5: Average ℓ0-norm for ADA-L1 and for the baselines on real datasets.

ESL CITY CPU MPG

0.22± 0.04 0.05± 0.03 0.12± 0.05 0.15± 0.07

Table 2.6: Average test error for ADA-L1 on real datasets.

• MPG: city-cycle fuel consumption in miles per gallon of some cars (398) and n = 7
associated technical characteristics, e.g., weight, acceleration, model year.

These datasets of overall evaluations are turned into datasets of preference and in-
difference statements by randomly drawing pairs of alternatives (without replacing them)
and comparing their global scores. The criteria associated with a decreasing monotonicity
are multiplied by −1 and the marginal value values are made commensurate by means of
linear normalization.

We compare ADA-L1 and the baseline methods in terms of test error and number
of non-null coefficients of the learned models (ℓ0-norm). The results are averaged over 100
simulations for each dataset. For each simulation, the models are trained on 80% of the
dataset and tested over the 20% left with a random split. In Table 2.5 are presented the
average ℓ0-norm of the learned models for the different methods. The results leading to
the smaller ℓ0-norms are highlighted in bold and the second-best results are underlined.
ADA-L1 provides very sparse models with significantly lower ℓ0-norms than the one
obtained with the baseline methods. This model compacity is obtained at no cost in terms
of generalizing performance since ADA-L1 provides test errors similar to the baseline
methods. We indeed performed pairwise t-tests to test the significance of the difference
in test error between all the methods and we obtained p-values of magnitude 0.5. The test
error numerical values obtained for ADA-L1 are provided in Table 2.6. This suggests that
ADA-L1 is able to identify the few criteria coalitions that really matter in the preference
value system underlying each dataset.
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4 Conclusion

In this chapter, we have introduced a new approach to learn both marginal values
and capacities in CIU and bi-CIU models in the context of decision-making under uncer-
tainty (DMU) and multi-criteria/attribute decision-making (MCDM/MADM). We first
proposed a variant of the tradeoff method for both DMU and MADM contexts to learn
marginal utility functions which appears to be more robust than usual elicitation meth-
ods based on standard sequences. Then we presented a method to learn sparse Möbius
representations of capacities using adaptive ℓ1-regularization. It determines where are the
Möbius masses that really matter to define the capacity. This reveals those interacting
subsets of criteria that must be kept in the general Choquet integral model to fit the ob-
served preferences. One important advantage of this approach is that interacting subsets
of any size can be included in the model. No prior restriction on the size of interaction
factors is made, they are derived from the database of preference examples.

An important aspect concerns the complexity of the learning task. The linear
reformulation of problem P ′ introduced in Section 2 includes 2n+1 + 2|I| + |P | variables
and ∑n

k=1 k
(
n
k

)
+ |I| + |P | + 1 constraints. Therefore the problem to be solved grows

exponentially with the number of viewpoints n. It remains tractable up to a dozen of
viewpoints which covers most of practical cases in MCDM. In order to improve scalability
of the method, several options could be investigated. First, a hierarchical structure over
criteria can be used which may drastically reduce the number of criteria to be aggregated
at every level and therefore the size of the learning problem. This idea was implemented in
[Bresson et al., 2021] to learn 2-additive capacities and could be extended to learn general
capacities [Bresson, 2022]. Another option would be to leverage the dual formulation of
the optimization problem P ′ as in kernel-based machine learning methods. This option
is investigated in the next chapter.

Beside scalability, several natural extensions of this work could be considered. First,
the construction of compact representations of CIU is based on Equation 2.12 that com-
bines Möbius masses and terms of type mini∈S{ui(xi)}. Alternative representations exist
for CIU and bi-CIU, combining Möbius masses and factors of type maxi∈S{ui(xi)}. They
could lead to compact representations as well. This suggests extending our approach
and combining min and max factors to produce even more compact representations of
capacities. Another extension could be to adapt our approach to other decision models
allowing interacting criteria. For example, the multilinear marginal value model [Keeney
et al., 1993] admits a representation in terms of Möbius masses similar to Equation 2.12
where min factors are substituted by products ∏i∈S ui(xi). Clearly, the learning approach
we have proposed here for the capacity identification also applies to this model with very
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minor modifications. Such extensions are investigated along with the scalability question
in the next chapter.
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Summary

In this chapter, we consider a large class of preference models that allow for the
synthesis of conflicting and potentially interacting viewpoints. Allowing viewpoint in-
teractions in a preference model increases the complexity of the preference learning task
due to the combinatorial nature of the possible interactions. Here, we propose a general
approach to learn a preference model in which the interaction pattern is revealed from
preference data and kept as simple as possible. Within a unified framework, we consider
weighted aggregation functions such as multilinear utilities and Choquet integrals, which
allow representations that include non-linear terms capturing the joint benefit or penalty
associated with certain combinations of viewpoints.. The weighting coefficients, known
as Mobius masses, model positive or negative synergies among viewpoints. We propose
an approach to learn the Mobius masses, based on iterative reweighted least squares for
sparse recovery, and dualization to improve scalability. This approach is applied to learn
sparse representations of the multilinear utility and conjunctive/disjunctive forms of the
discrete Choquet integral from preferences examples, in aggregation problems possibly
involving more than 20 viewpoints. This chapter is based on the following publications:
[Herin et al., 2022c, 2023b].
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Introduction

In this chapter, we aim to learn preference models that are both simple and explain-
able, yet flexible enough to accurately model human preferences and decision behaviors.
As outlined in Chapter 1 (see, for instance, Examples 1.3 and 1.5), the possible pres-
ence of interactions between viewpoints prevents representing preferences using simple
linear models such as weighted arithmetic means. Therefore, we consider here more so-
phisticated weighted evaluation models that include nonlinear terms, which measure the
joint benefit or penalty associated with certain groups of viewpoints. Key examples of
these models include the multilinear utility and the Choquet integral (see Definitions 1.15
and 1.9), where interactions are respectively represented by product and minimum or
maximum operations.

However, allowing the possibility of interactions in a decision model is a source
of complexity in preference modeling and preference learning due to the combinatorial
nature of these interactions. In an aggregation model involving n viewpoints, interactions
may appear in any of the 2n−1−n subsets of viewpoints including more than one element.
For n = 10 viewpoints it represents slightly more than 1000 possible interactions to
analyze. When n = 20 it already represents more than one million possible interactions.
In order to preserve scalability in learning the interactions, a standard approach is to
reduce the combinatorial aspect of the problem by allowing only a limited number of
them, using for instance k-additivity constraints (see Definition 1.10). These restrictions
are very often used to obtain a prior model complexity reduction (k = 2 being the
most common choice) [Grabisch et al., 2008, Grabisch and Labreuche, 2010, Tehrani and
Hüllermeier, 2013, Hüllermeier and Tehrani, 2013, Galand and Mayag, 2017b, Ah-Pine
et al., 2018, Bresson et al., 2021, Tehrani, 2021, Pelegrina et al., 2020a].

On the other side, as outlined in Chapter 2 (see for instance Example 2.3), these
cardinal-based prior restrictions eliminate very simple and natural representations of pref-
erences that require larger interactions. In contrast, using a sparsity-inducing penalty in
the learning problem allows useful groups to emerge from preference data, thus providing
a model that is as simple as possible and fits the preference examples well. However, the
absence of prior restrictions on capacities comes at the expense of computation times and
scalability, and the proposed methods are usually implemented on problems involving
less than 10 viewpoints [Anderson et al., 2014, Adeyeba et al., 2015, Pinar et al., 2017,
de Oliveira et al., 2022, Herin et al., 2022a, 2024c].

Contributions and Chapter Organization Our contribution in this chapter is to
propose a scalable algorithm to learn sparse representations of interactions from prefer-
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ence examples, for the multilinear and Choquet models and any other weighted aggrega-
tion function taking the form of a sum of disjunctive or conjunctive interaction terms. To
this end, we build on the iteratively re-weighted least squares (IRLS) method [Daubechies
et al., 2010, Beck, 2015], which consists of approximating an ℓ1-norm minimization prob-
lem through a sequence of least squares problems, typically easier to solve. Specifically,
after formulating a general ℓ1-regularized preference learning problem (Section 1), we
first show that this problem can be approximated using an IRLS sequence (Section 2.1),
and then, leveraging Lagrangian duality in the spirit of support vector machines (see
Subsection 3.1.2 of Chapter 1), we show that each sub-problem of the sequence admits
an efficient dual formulation (Section 2.2). The benefit of this approach is finally illus-
trated on problems involving up to more than 20 viewpoints using synthetic preference
data (Section 3.1). It is also applied to judicial decision-making in divorce cases using
real-world data (Section 3.2).

Notations The transpose of a matrix/vector v is denoted by v⊤ and v ∗ u denotes the
element-wise product. Additionally, notations 0 and 1 are used to denote vectors of
appropriate dimension whose components all equal 0 and 1 respectively. Finally, recall
that N denotes the set of viewpoints, i.e., N = {1, . . . , n} and that the notation S ⊆ N

excludes the empty set by convention. Also, for any x = (x1, . . . , xn) ∈ Rn and S ⊆ N ,
xS refers to the restriction of x to the components xi, i ∈ S.

1 A General Capacity-based Preference Model

In this chapter, we focus on learning non-linear aggregation functions such as the
multilinear utility and the Choquet integral (see Definitions 1.15 and 1.9), and therefore,
we assume that the alternatives in the decision problem are described by their marginal
utilities with respect to n viewpoints (elicited beforehand), i.e., by vectors of the form
x = (x1, . . . , xn) ∈ X = [0, 1]n. Both the multilinear and the Choquet model allow
modeling interaction between viewpoints by means of a capacity w (see Definition 1.8)
that attaches a weight to any possible group of interacting viewpoints. While the two
aggregation functions, denoted respectively by MLw and Cw, may not seem to function
the same way at first glance, it is interesting to note that they admit a similar formulation
using the Möbius transform mw (see Definition 1.4) of capacity w. To highlight this, we
first recall the definition of MLw from Möbius masses [Owen, 1975]:

MLw(x) = ∑
S⊆N mw(S)∏i∈S xi (3.1)

Similarly, Cw(x) admits several reformulations from mw [Chateauneuf and Jaffray, 1989,
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Grabisch et al., 2009]:

Cw(x) = ∑
S⊆N mw(S) mini∈S{xi} (conjunctive form) (3.2)

Cw(x) = ∑
S⊆N mw̄(S) maxi∈S{xi} (disjunctive form) (3.3)

where w̄ is the dual of w, i.e., the capacity defined by w̄(S) = w(N)−w(N \S), S ⊆ N .
These formulations suggest that both MLw and Cw might admit a compact rep-

resentation when the Möbius inverse is sparse (i.e., when the vector of Möbius masses
includes many zeros or small values that will not significantly impact the calculation).
This is illustrated in the following toy example with n = 3 viewpoints.

Example 3.1. Let N = {1, 2, 3} and w, w̄ defined on N by:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

w(S) 0.1 0.2 0.3 0.3 0.4 0.5 1.0

mw(S) 0.1 0.2 0.3 0.0 0.0 0.0 0.4

w̄(S) 0.5 0.6 0.7 0.7 0.8 0.9 1.0

mw̄(S) 0.5 0.6 0.7 −0.4 −0.4 −0.4 0.4

While w is dense (i.e., w(S) > 0, for any S ⊆ N), its Möbius transform mw is sparse
since the Möbius masses of the interaction subsets (of size strictly higher than 1) all equal
zero except the grand coalition mass mw({1, 2, 3}). Therefore MLw and Cw admit a simple
formulation using respectively Equations 3.1 and 3.2:

MLw(x) = 0.1 x1 + 0.2 x2 + 0.3 x3 + 0.4 x1x2x3 (3.4)
Cw(x) = 0.1 x1 + 0.2 x2 + 0.3 x3 + 0.4 min{x1, x2, x3} (3.5)

Here the disjunctive form of Cw (Eq. 3.3) is less interesting because mw̄ is less sparse
than mw. However, Cw̄ can be simply described using the disjunctive form, as the dual
capacity of w̄ is w. Then, using mw and Equation 3.3, we have:

Cw̄(x) = 0.1x1 + 0.2x2 + 0.3x3 + 0.4 max{x1, x2, x3} (3.6)

In order to factorize and generalize Equations 3.1-3.3, we will now introduce a
unifying framework based on a general capacity-based preference model, including Cw and
MLw as special cases, that associates to any alternative x ∈ X , the value:

Fm(x) = ∑
S⊆N mSϕS(xS) (3.7)
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where for any S ⊆ N , mS is the Möbius mass on S and ϕS aggregates the quantities
xi, i ∈ S to define the interaction term ϕS(xS). Thus ϕS is the product if Fm is the
multilinear utility and ϕS is the min (resp. max) operation if Fm is the conjunctive
(resp. disjunctive) form of the Choquet integral. Note that function Fm(x) reads as the
following inner product Fm(x) = m⊤ϕ(x) where m = (mS)S⊆N and ϕ : Rn → R2n−1 is
a nonlinear mapping function that maps x to ϕ(x) = (ϕS(xS))S⊆N . Both vectors m and
ϕ(x) are indexed by the subsets S ⊆ N numbered in lexicographic order.

Remark 3.1 (a general interaction function). Interaction function ϕS could possibly be
other nonlinear factors than the product, min or max, as long as the aggregation function
Fm remains non-decreasing, to ensure the monotonicity of the preference model (see
Definition 1.6). Conditions on ϕS for Fm to be non-decreasing are provided in [Kolesarova
et al., 2012] (for m corresponding to the Möbius transform of a capacity monotonic w.r.t.
set inclusion).

Our objective is now to learn a sparse representation of m based on a training set of
preference statements {(xℓ, x′ℓ)}ℓ∈P and possibly of indifference statements {(xℓ, x′ℓ)}ℓ∈I
where for any ℓ ∈ P , xℓ ≿ x′ℓ and for any ℓ ∈ I, xℓ ∼ x′ℓ. The learning problem naturally
formulates as a regularized empirical risk minimization (RERM) problem (see Definition
1.21) where we minimize both the error on the preference examples (using the pref-hinge
loss; see Definition 1.28) and the ℓ1-norm of the Möbius vector. The learning problem is
thus formulated as follows:

(P) min
m∈R2n−1, m⊤1=1

∑
ℓ∈P

(δ − (m⊤ϕ(xℓ)−m⊤ϕ(x′ℓ)))+ +
∑
ℓ∈I
|m⊤ϕ(xℓ)−m⊤ϕ(x′ℓ)|+ λ∥m∥1

The hyper-parameter λ ≥ 0 controls the level of regularization and δ is a positive dis-
crimination threshold used to separate preference from indifference situations.

From now on, for any pair of alternatives (xℓ, x′ℓ), the difference ϕ(xℓ) − ϕ(x′ℓ) is
denoted by ∆ℓ. Then, similarly as in Chapter 2 (see Section 2.2.3), Problem P can be
solved by linear programming using the following linearization:

(P) min
∑
ℓ∈P

ϵℓ +
∑
ℓ∈I

(ϵ−
ℓ + ϵ+

ℓ ) + λ
2n−1∑
j=1

(aj + bj) (3.8)

mj = aj − bj, j = n+ 1, . . . , 2n − 1
m⊤∆ℓ + ϵℓ ≥ δ, ℓ ∈ P

m⊤∆ℓ + ϵ+
ℓ − ϵ−

ℓ = 0, ℓ ∈ I
m⊤1 = 1, ϵℓ ≥ 0, ℓ ∈ P, ϵ+

ℓ , ϵ
−
ℓ ≥ 0, ℓ ∈ I, aj, bj ≥ 0, j = 1, . . . , 2n − 1
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where variable mj is the jth component of vector m, and variables (aj, bj), ϵℓ, and (ϵ+
ℓ , ϵ

−
ℓ )

are respectively used for the linearization of |mj|, the error made on the preference ex-
ample xℓ ≻ x′ℓ, and on the indifference xℓ ∼ x′ℓ.

Despite a simple linearization, the obtained linear program still drags a number
of variables exponential in n (i.e., 2(2n − 1) + |P | + 2|I|) and thus is hardly solvable for
more than a dozen of viewpoints using standard linear programming numerical solvers. A
way to bypass this issue could be to reduce the size of the learning optimization problem
by resorting to k-additivity constraints, i.e., enforcing mS = 0, for any S ⊆ N such
that |S| > k. However, as discussed in Chapter 2 (see Example 2.3), such a reduction
significantly limits the ability of the preference model Fm to capture natural preferences.
This is also illustrated in Example 3.1, where the models given by by Equations 3.4-3.6,
while admitting sparse Möbius transforms and simple formulations, are n-additive and
could not be well approximated by k-additive models. Thus, we propose not to resort
to k-additivity constraints and solve Problem P with the full set of Möbius variables.
Then, to handle problems involving more than a dozen of viewpoints, we propose a more
scalable optimization method than solving P using linear programming. The approach
is formulated for the multilinear and Choquet models and any other instance of model
Fm (see Equation 6.1), and relies on iteratively re-weighted least squares and dualization
as explained in the next section.

2 A Dual Iterative re-Weighted Least Squares (IRLS)
Algorithm

For the sake of scalability, we propose to solve P by solving a sequence of sub-
problems that admit an efficient dual formulation. More precisely, we use an iteratively
reweighted least square (IRLS) algorithm that consists in approximating the solution of a
ℓ1-norm minimization problem with a sequence of least squares problems. In the follow-
ing, we first present the underlying idea and theoretical foundations of IRLS sequences,
before deriving an IRLS sequence for Problem P . Then, after introducing some back-
ground on lagrangian duality, illustrated with support vector machines, we show that the
subproblems of the proposed IRLS sequence admit compact dual formulations.

2.1 IRLS for Sparse Preference Learning

2.1.1 Variational Formulation of the ℓ1-norm

ℓ1-norm optimization can be linked to least squares problems through a quadratic
variational formulation of the ℓ1-norm, which allows the absolute value function to be
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Figure 3.1: Functions gz : x 7→ 1
2(x2

z
+ z) for different z values and function g : x 7→ |x|.

expressed as the infimum of quadratic functions [Black and Rangarajan, 1996, Rocha
et al., 2009, Bach et al., 2012], i.e., for any x ∈ R:

|x| = 1
2 min

z≥0

x2

z
+ z (3.9)

For any x ̸= 0, Equation 3.9 can be simply derived by observing that for any z > 0,
using the arithmetic-geometric mean inequality i.e., a+b

2 ≥
√
ab, for a = x2

z
and b = z, we

have |x| ≤ 1
2(x2

z
+z). Finally, we recover Equation 3.9 by remarking that the lower bound

|x| is reached for z = |x| > 0. The equality also holds for x = 0 using the convention
0
0 = 0. It is illustrated in Figure 3.1, where we can observe that function g : x 7→ |x|
(dashed black line) is the infimum of the quadratic functions gz : x 7→ 1

2(x2

z
+ z), z ∈ R∗

+,
which are shown in blue for z = {0.2, 0.3, 0.5, 1}.

Using Equation 3.9, ℓ1-regularized RERM problems of the form minmRemp(m) +
λ∥m∥1, where m is a model parameter vector of size d and Remp is the empirical risk
on some dataset (see Definition 1.20), can be reformulated as a two-block optimization
problem, involving a d-dimensional vector z = (z1, . . . , zd) of auxiliary variables:

min
m,z≥0

Remp(m) + λ

2

d∑
j=1

(
m2
j

zj
+ zj) (3.10)

Then, the iterative re-weighted least squares (IRLS) algorithm [Grandvalet, 1998,
Daubechies et al., 2010, Bach et al., 2012, Beck, 2015] consists in alternatively minimizat-
ing w.r.t. m and z. More precisely, if m(0) denotes an initial model parameter vector, and
z(0) = |m(0)| (component-wise), at each iteration k ≥ 0, the two following optimization
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tasks are successively performed:

m(k+1) ∈ arg min
m

Remp(m) + λ

2

d∑
j=1

m2
j

z
(k)
j

(3.11)

z(k+1) ∈ arg min
z≥0

λ

2

d∑
j=1

(
(m(k+1)

j )2

zj
+ zj) (3.12)

By Equation 3.9 the solution of Problem 3.12 is z(k+1)
j = |m(k+1)

j |, j = 1, . . . , d.
Thus, the algorithm given above reduces to a sequence of RERM problems with a weighted
(squared) ℓ2-regularization, where the weights are iteratively updated, i.e., :

m(k+1) ∈ arg min
m

Remp(m) + λ

2

d∑
j=1

m2
j

|m(k)
j |

Intuitively, this iterative procedure allows sparsity to be recovered by increasingly
penalizing non-significant coefficients (which end up vanishing). The interest of such
procedure lies in the fact that least squares problems are typically easy to solve.

For instance, let us consider the learning of a linear model h(x) = m⊤x using
regression examples (xℓ, yℓ) ∈ Rd × R stored in matrices X = (xℓ)ℓ and Y = (yℓ)ℓ. If
we use the square loss, i.e., Remp(m) = 1

2∥Y −Xm∥2
2, the problem given by Equation

2.1.1 can be written as: m(k+1) ∈ arg minm 1
2∥Y −Xm∥2

2 + λ
2m

TD−1
k m, where D−1

k is
a diagonal matrix whose diagonal contains the weights |m(k)

j |, j = 1, . . . , d. Then, it
can easily be checked that each subproblem admits the closed-form solution m(k+1) =
(X⊤X + λD−1

k )−1X⊤Y . For further illustrative examples, the reader may refer to the
blog [Bach, 2019].

Here, we will show that the IRLS method allows the approximation of the solution
of Problem P using a sequence of ℓ2-regularized problems admitting a compact dual form
whose size is no longer exponential in n the number of viewpoints, but linear in |P |+ |I|,
the number of preference and indifference examples. Before that, we give general results
from [Beck, 2015] on the convergence of the alternating minimization (AM) algorithm,
allowing to guarantee the convergence of the proposed IRLS sequence.

2.1.2 Convergence of the Alternating Minimization Algorithm

Below, we give a general convergence result for the AM algorithm due to [Beck,
2015] for two-block optimization problems of the form:

min
m∈Rn1 ,z∈Rn2

H(m, z) := f(m, z) + g1(m) + g2(z) (3.13)
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where n1, n2 ∈ N∗ and f, g2, g1 satisfy the following assumptions:

(i) functions g1 : Rn1 → R and g2 : Rn2 → R are closed and proper convex func-
tions assumed to be subdifferentiable over their domains dom g1 and dom g2 (see
Definitions 1.24,1.26 and 1.27).

(ii) function f is a continuously differentiable convex function over dom g1 × dom g2.

(iii) the gradient of f w.r.t. the first block of variables m, denoted by ∇1f , is uniformly
Lipschitz continuous over dom g1 with constant 0 < L1 < ∞, i.e., for any m ∈
dom g1, z ∈ dom g2 and d1 ∈ Rn1 such that m+ d1 ∈ dom g1, we have:

∥∇1f (m+ d1, z)−∇1f(m, z)∥2 ≤ L1 ∥d1∥2 (3.14)

Denote by ∇2f the gradient of f w.r.t. the second block of variables z, and by
L2 its Lipschitz constant. ∇2f may be not uniformly Lipschitz continuous, i.e.,
L2 = +∞.

In this setting, the AM algorithm consists of iteratively optimizing over each block
of variables as follows:

Algorithm 3.1: Alternating Minimization (AM) Algorithm
Inputs: m(0) ∈ dom g1
z(0) ← arg minz f(m(0), z) + g2(z)
for k = 0, . . . do

m(k+1) ∈ arg minm f(m, z(k)) + g1(m)
z(k+1) ∈ arg minz f(m(k+1), z) + g2(z)

The following theorem guarantees the convergence of the sequence H(m(k), z(k))
towards the minimum value H∗ of Problem 3.13 under Assumptions (i)-(iii).

Theorem 3.1 (Theorem 3.3 in [Beck, 2015]). Let
{
m(k), z(k)

}
k≥0

be the sequence
generated by the AM algorithm. Then for all k ≥ 2:

H
(
m(k), z(k)

)
−H∗ ≤ max


(1

2

) k−1
2 (

H
(
m(0), z(0)

)
−H∗

)
,
8 min {L1, L2}R2

k − 1


where H∗ is the optimal value of Problem 3.13, X∗ the set of optimal solutions and
R = maxx∈Rn1×n2 maxx∗∈X∗

{
∥x− x∗∥2 : H(x) ≤ H

(
m(0), z(0)

)}
.
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2.1.3 IRLS for Sparse Preference Learning

Using Theorem 3.1, we now establish Proposition 3.1 providing an IRLS algorithm
that approximatively solves Problem P . The proof follows a similar line of reasoning to
the analysis of IRLS sequences in [Beck, 2015], while taking into account the specificities
of Problem P , in particular the non-differentiability of the pref-hinge loss.

Proposition 3.1. Consider the sequence m(k), initialized with any m(0) such that 1⊤m(0) =
1, and defined for any k ≥ 1 by:

m(k+1) ∈ arg min
m∈Rd s.t. m⊤1=1

∑
ℓ∈P

(δ −m⊤∆ℓ)+ +
∑
ℓ∈I
|m⊤∆ℓ|+ λ

2

d∑
j=1

m2
j√

(m(k)
j )2 + η2

(3.15)

where d = 2n − 1 and η > 0 is a smoothing parameter. Let also J denotes the objective
function of P and J∗ its optimum. Then, for any k ≥ 2:

J(m(k))− J∗ ≤ max

(1

2

) k−1
2 (

Jη(m(0))− J∗
η

)
,

16λR2

η(k − 1)

+ λdη

where Jη is a surrogate of P in which the ℓ1-norm is substituted by ∑d
j=1

√
m2
j + η2 (and

J∗
η is its optimum), and R is a constant independent of k.

Proof. Let η > 0 be a smoothing parameter and Pη the associated surrogate problem of
P where the absolute value |mj| is replaced by the differentiable term

√
m2
j + η2 (which

approaches |mj| when η → 0):

(Pη) min
∑
ℓ∈P

(δ −m⊤∆ℓ)+ +
∑
ℓ∈I
|m⊤∆ℓ|+ λ

d∑
j=1

√
m2
j + η2

s.t. m⊤1 = 1

Remark that Problem Pη can be reformulated in an unconstrained form:

(Pη) min
∑
ℓ∈P

(δ −m⊤∆ℓ)+ +
∑
ℓ∈I
|m⊤∆ℓ|+ λ

d∑
j=1

√
m2
j + η2 + 1M(m)

with M = {m ∈ Rd|m⊤1 = 1}, and 1M(m) = 0 if m ∈ M and +∞ otherwise. Then,
using Equation 3.9 for x =

√
m2
j + η2, j = 1, . . . , d yields:

d∑
j=1

√
m2
j + η2 = 1

2 min
z≥ η

2 1

d∑
j=1

(
m2
j + η2

zj
+ zj)
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Note that the optimization is performed over z ≥ η
21, as this avoids singularities at

0 while not affecting the minimum, which is reached at zj =
√
m2
j + η2 ≥ η ≥ η

2 . This
leads to reformulate Pη as a problem involving two blocks of variables (m, z) ∈ Rd × Rd:

(Pη) minm,z H(m, z) = g1(m) + g2(z) + f(m, z)

with


f(m, z) = λ

2
∑d
j=1(

m2
j +η2

zj
+ zj)

g1(m) = ∑
ℓ∈P (δ −m⊤∆ℓ)+ +∑

ℓ∈I |m⊤∆ℓ|+ 1M(m)

g2(z) = 1Zη(z)

with Zη = {z ∈ Rd|zi ≥ η
2 , i = 1, . . . , d}. Functions g1, g2 are closed proper convex and

sub-differentiable respectively over dom g1 = M and dom g2 = Zη, and f is convex
and continuously differentiable over dom g1 × dom g2. Furthermore, for j = 1, . . . , d,
(∇1f(m, z))j = λmj

zj
and thus for any m, z ∈ dom g1 × dom g2 and d1 ∈ Rd such that

m+ d1 ∈ dom g1 we have:

∥∇1f (m+ d1, z)−∇1f(m, z)∥2 = λ

√√√√√ d∑
j=1

d2
j

z2
j

≤ 2λ
η
∥d1∥2 (3.16)

Thus,∇1f is uniformly Lispschitz continuous over dom g1 with Lispschitz constant L1 =
2λ
η

, while ∇2f is not uniformly Lispschitz continuous over dom g2 , i.e., L2 = +∞.
Therefore, Assumptions (i)-(iii) are satisfied and Problem Pη fits in the class of problems
solvable by AM.

Let m(k), z(k) be the sequence generated by AM (see Algorithm 3.1). By Equation
3.9, we have z

(k)
j =

√
m

(k)
j

2 + η2, j = 1, . . . , d, and thus the AM algorithm yields the
following IRLS sequence:

m(k+1) ∈ arg min
m

∑
ℓ∈P

(δ −m⊤∆ℓ)+ +
∑
ℓ∈I
|m⊤∆ℓ|+ 1M(m) + λ

2

d∑
j=1

m2
j√

m
(k)
j

2 + η2

Additionally, for any m(0) ∈ dom g1, by Theorem 3.1 we have that for any k ≥ 2:

H(m(k), z(k))−H∗ ≤ max

(1

2

) k−1
2 (

H
(
m(0), z(0)

)
−H∗

)
,

16λR2

η(k − 1)

 (3.17)

where H∗ is the minimal value of H and R is a constant that only depends on H and the
initialization of the sequence (see Theorem 3.1), and is thus independent of k. Finally,
remark that H∗ = J∗

η and for any k, H(m(k), z(k)) = Jη(m(k)), and denote by Ck the

115



Chapter 3. A Unified Approach to Learn Sparse Preference Models with Interactions

right-hand side of Equation 3.17. Then, using |x| ≤
√
x2 + η2 ≤ |x|+ η, we obtain:

J(m(k))− J∗ = J(m(k))− Jη(m(k)) + Jη(m(k))− J∗
η + J∗

η − J∗

≤ Jη(m(k))− J∗
η + λdη

≤ Ck + λdη

In the following, Pk refers to the problem solved at each iteration of the IRLS
sequence (see Equation 3.15). Proposition 3.1 ensures that solving problems Pk for a
sufficient number of iterations and a sufficiently small η provides a near-optimal solution
to P . The special interest of the IRLS method in our case is revealed when considering
the dual formulation of each problem Pk. Indeed, one can use Lagrangian duality to
obtain a more compact mathematical programming formulation, as explained in the next
Subsection.

2.2 Dual Formulation

2.2.1 Lagragian Duality

Lagrangian duality is a central concept in constrained optimization, where we con-
sider optimization problems of the following form:

min
m∈Rd

f0(m) (3.18)

fi(m) ≤ 0, i = 1, . . . , s
gi(m) = 0, i = 1, . . . , t

where functions fi, gi are real-valued functions defined over Rd. The Lagragian of Problem
3.18 is the function L : Rd × Rs

+ × Rt → R, defined by:

L(m,α, µ) = f0(m) +
s∑
i=1

αifi(m) +
t∑
i=1

µigi(m) (3.19)

where αi ≥ 0, (resp. µi) is referred to as the Lagrange multiplier associated with the
ith inequality (resp. equality) constraint. Intuitively, the Lagrangian is used to formu-
late Problem 3.18 in an unconstrained form using penalties to penalize unfeasible solu-
tions. Indeed, remarking that max(α,µ)∈Rs

+×Rt L(m,α, µ) = +∞ if there exists i such that
gi(m) ̸= 0 or fi(m) > 0 and f0(m) otherwise, Problem 3.18 reduces to:

min
m∈Rd

max
(α,µ)∈Rs

+×Rt
L(m,α, µ)
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The Lagrange dual function, denoted by g, is obtained by minimizing the Lagrangian
w.r.t. the primal variable m, i.e., for any (α, µ) ∈ Rs

+ × Rt:

g(α, µ) = min
m∈Rd

L(m,α, µ) (3.20)

Function g provides lower bounds on the optimal value of Problem 3.18. Indeed, for any
(α, µ) ∈ Rs

+ × Rt, we have:

g(α, µ) ≤ min
m s.t. fi(m)≥0,∀i

gi(m)=0,∀i

L(m,α, µ) ≤ min
m s.t. fi(m)≥0,∀i

gi(m)=0,∀i

f0(m) (3.21)

The dual problem (in contrast to Problem 3.18 referred to as the primal problem)
can be regarded as the problem of finding the tightest lower bound and is thus formulated
as the maximization of the dual function, i.e.,:

max
(α,µ)∈Rs

+×Rt
g(α, µ) = max

(α,µ)∈Rs
+×Rt

min
m∈Rd

L(m,α, µ) (3.22)

Let us denote by g∗ and f ∗
0 the optimal values of the dual Problem 3.22 and the

primal Problem 3.18 respectively. Then by Equation 3.21, the weak duality property
always holds, i.e., g∗ ≤ f ∗

0 . Furthermore, when Problem 3.18 is a convex optimization
problem, (i.e., functions fi, i = 0, . . . , s are convex and gi, i = 1, . . . , t are linear functions)
and the Slater’s condition hold, then the strong duality property holds, i.e., g∗ = f ∗

0 (for
the proof see §5.3.2 in [Boyd and Vandenberghe, 2004]).

Remark 3.2 (Slater’s conditions). If D denotes the intersection of the domains of func-
tions fi, i = 0, . . . , s, the Slater’s condition requires that there exists a point m in the
relative interior1 of D such that the inequality constraints are strictly satisfied, i.e.,
fi(m) < 0, i = 1, . . . , s. When the inequality constraints are linear, the requirement
reduces to fi(m) ≤ 0, i = 1, . . . , s which is equivalent to feasibility. Hence, when the
objective function is convex and all inequality constraints are linear (or there is only
equality constraints), strong duality always holds.

Remark 3.3 (convexity of the dual). It is also important to note that the dual problem is
always convex, regardless of the convexity of the primal problem. Indeed, it can easily
be checked that any pointwise minimum of an affine function, i.e., function of the form
h(α) = minx α⊤x is concave.

1The relative interior of convex set S is the set {m ∈ S|∃ϵ > 0 such that Bϵ(m) ∩ aff(S) ⊆ S} where
aff(S) is the affine hull of S, and Bϵ(m) is a ball of radius ϵ centered on m.
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Therefore, under strong duality, it is equivalent to solve the dual or the primal
problem. As the dual problem only involves sign constraints, it is sometimes easier to
solve than the constrained primal Problem 3.18. Below, we recall necessary and sufficient
optimality conditions for convex optimization problems, referred to as Karush-Kuhn-
Tucker (KKT) conditions:

Theorem 3.2 (for the proof see §5.5.3 in [Boyd and Vandenberghe, 2004]).
Assume that fi, i = 0, . . . , s are convex differentiable functions and gi, i = 1, . . . , t are lin-
ear functions. If m∗, (α∗, µ∗) satisfy the following conditions:

• (Primal and dual feasibility)

fi(m
∗) ≤ 0, α∗

i ≥ 0, i = 1, . . . , s

gi(m∗) = 0, i = 1, . . . , t

• (Complementary slackness) α∗
i fi(m∗) = 0, i = 1, . . . , s

• (Stationarity) ∇mL(m∗, α∗, µ∗) = 0

⇔ ∇f0(m∗) +∑s
i=1 α

∗
i∇fi(m∗) +∑t

i=1 µ
∗
i∇gi(m∗) = 0

then, m∗ and (α∗, µ∗) are respectively the optimal solutions of the primal Problem 3.18
and dual Problem 3.22. Conversely, if m∗, (α∗, µ∗) are optimal solutions, they necessary
verify the conditions given above.

For more in-depth results and proofs, the reader may refer to [Bertsekas, 1997] or [Boyd
and Vandenberghe, 2004] (Chapter 5). In the following, we illustrate these results on
support vector machines, where the learning problem closely resembles the sub-problems
Pk the IRLS sequence.

2.2.2 Support Vector Machine

In Subsection 3.1.2 of Chapter 1, we introduced the linear support vector machine
(SVM) algorithm, which consists of learning a binary classifier of the form sign(h(x)) with
a linear decision boundary, i.e., h(x) = m⊤x + b, (m, b) ∈ Rn × R. However, the data
may not be linearly separable, requiring the use of a non-linear classifier. In such cases,
the input data can be projected from the original feature space X into a richer feature
space H using a non-linear mapping function ϕ : X → H [Cortes and Vapnik, 1995,
Schiilkop et al., 1995, Cristianini and Shawe-Taylor, 2000]. If d denotes the dimension
of H, this yields the non-linear decision boundary h(x) = m⊤ϕ(x) + b, (m, b) ∈ Rd × R.
Using the latter separating function, and a dataset {(xℓ, yℓ)}tℓ=1, where xℓ ∈ X = Rn and
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yℓ ∈ {−1, 1}, the SVM learning problem (see Problem 1.10) reformulates as follows:

min
m∈Rd,b∈R,ϵ∈Rt

+

t∑
ℓ=1

ϵℓ + λ

2∥m∥
2
2 (3.23)

yℓ(m⊤ϕ(xℓ) + b) ≥ 1− ϵℓ, ℓ = 1, . . . , t
ϵℓ ≥ 0, ℓ = 1, . . . , t

Let ϵ be the vector of slack variables (ϵ1, . . . , ϵt), then the Lagrangian function of
Problem 3.23 can be derived by introducing Lagrange multipliers (α, β) ∈ Rt

+ × Rt
+:

L(m, b, ϵ, α, β) =
t∑

ℓ=1
ϵℓ + λ

2∥m∥
2
2 −

t∑
ℓ=1

αℓ
(
yℓ(m⊤ϕ(xℓ) + b)− (1− ϵℓ)

)
−

t∑
ℓ=1

βℓϵℓ

Then, the stationarity KKT condition (see Theorem 3.2) gives:

∇mL(m, b, ϵ, α, β) = λm−
t∑

ℓ=1
αℓy

ℓϕ(xℓ) = 0 =⇒ m = 1
λ

t∑
ℓ=1

αℓy
ℓϕ(xℓ) (3.24)

∇bL(m, b, ϵ, α, β) = −
t∑

ℓ=1
αℓy

ℓ = 0 (3.25)

∇ϵL(m, b, ϵ, α, β) = 1− α− β = 0 (3.26)

Finally, substituting these conditions back into the Lagrangian gives the following dual
problem :

max
α∈Rt

t∑
ℓ=1

αℓ −
1

2λ

t∑
ℓ,j=1

αℓαjy
ℓyjϕ(xℓ)⊤ϕ(xj) (3.27)

t∑
ℓ=1

αℓy
ℓ = 0, 0 ≤ α ≤ 1

This optimization problem is a convex quadratic program with t variables and
a unique constraint (expected box constraints). Therefore, it is often computationally
lighter than the primal Problem 3.23 when the number of examples t is low in front of d.
Furthermore, the learning task can be entirely independent of d in the case where the inner
products ϕ(xℓ)⊤ϕ(xj) can be evaluated without explicitly computing the d-dimensional
vectors ϕ(x). This trick is referred to as the kernel trick as the function κ : (x, x′) 7→
ϕ(x)⊤ϕ(x′) is called a kernel function [Cristianini and Shawe-Taylor, 2000, Schölkopf,
2002, Shawe-Taylor et al., 2004]. A basic example is the quadratic polynomial kernel
κ(x, x′) = (x⊤x′+c)2 whose computation requires a number of operation in O(n), whereas
the attached projection function ϕ(x) = (x2

1, . . . , x
2
n,
√

2xnxn−1, . . . ,
√

2xnx1, . . . ,
√

2x2x1,
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√
2xnc, . . . ,

√
2x1c, c) is of size d = (n+2)(n+1)

2 . A more detailed overview of kernel-based
machine learning methods will be given in Chapter 4.

Kernel SVMs have been leveraged for learning utility functions from preference ex-
amples on pairs of alternatives [Chapelle and Harchaoui, 2004, Radlinski and Joachims,
2005, Waegeman et al., 2009, Domshlak and Joachims, 2012], and in particular for learn-
ing Choquet integrals [Tehrani et al., 2014b, Tehrani, 2021] using the projection func-
tion ϕ(x) = (ϕS(xS))S⊆N and ϕS(xS) = mini∈S{xi}, since in this case we indeed have
Cw(x) = m⊤ϕ(x) if m is the Möbius transform of w. Here, we show that similarly to
a SVM, the subproblem Pk of the IRLS sequence given by Proposition 3.1, admits a
compact dual formulation.

2.2.3 Dual Formulation of the IRLS Sequence

The IRLS sequence given by Proposition 3.1, consists in solving Problem Pk at
each iteration, which after linearization of the pref-hinge loss reads as follows:

(Pk) min
m∈R2n−1

∑
ℓ∈P

ϵℓ +
∑
ℓ∈I

(ϵ−
ℓ + ϵ+

ℓ ) + λ

2

2n−1∑
j=1

m2
j√

(m(k)
j )2 + η2

m⊤∆ℓ + ϵℓ ≥ δ, ℓ ∈ P

m⊤∆ℓ + ϵ+
ℓ − ϵ−

ℓ = 0, ℓ ∈ I
m⊤1 = 1
ϵℓ ≥ 0, ℓ ∈ P, ϵ+

ℓ , ϵ
−
ℓ ≥ 0, ℓ ∈ I

where we recall that ∆ℓ = ϕ(xℓ) − ϕ(x′ℓ) with ϕ(x) = (ϕS(xS))S⊆N and ϕS(xS) =
mini∈S{xi} or ϕS(xS) = ∏

i∈S xi.
Since Pk is a convex problem with linear constraints, by Remark 3.2, strong duality

holds and there is no duality gap. Then solving Pk or its dual form is equivalent. The
efficiency of the dual form of Pk is detailed in the following proposition, where the number
of preference (resp. indifference) examples is denoted by p (resp. q), i.e., p = |P | (resp.
q = |I|):

Proposition 3.2. Problem Pk admits a dual formulation Dk which has p+q+1 variables
and 2(p+ q) box constraints:

(Dk) max
Γ=(α,β,µ)∈Rp+q+1

− 1
2λΓ⊤Q⊤(γk ∗Q)Γ + Γ⊤L

0 ≤ α ≤ 1

−1 ≤ β ≤ 1
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where γk is a vector containing the reciprocals of the current weights in the ℓ2-regularization,
i.e., γk =

(√
(m(k)

j )2 + η2
)d
j=1

with d = 2n−1. Also, Q = (∆P ,∆I ,1) is a data-dependent
matrix of size d× (p+ q+ 1) where ∆P = (∆ℓ)ℓ∈P and ∆I = (∆ℓ)ℓ∈I are matrices of size
d× p and d× q respectively. Finally, L = (δ1,0, 1) ∈ Rp+q+1.

Proof. For the sake of conciseness, we write Pk in a vectorial form:

(Pk) min
m∈Rd,(ϵ,ϵ+,ϵ−)∈Rp+2q

+

1⊤ϵ+ 1⊤(ϵ+ + ϵ−) + λ

2m
⊤(γ−1

k ∗m)

∆⊤
Pm+ ϵ ≥ δ1 (3.28)

∆⊤
I m+ ϵ+ − ϵ− = 0 (3.29)

m⊤1 = 1 (3.30)
ϵ ≥ 0, ϵ+ ≥ 0, ϵ− ≥ 0 (3.31)

where ϵ = (ϵ1, . . . , ϵp), ϵ+ = (ϵ+
1 , . . . , ϵ

+
q ), ϵ− = (ϵ−

1 , . . . , ϵ
−
q ) and γ−1

k =
(

1/
√
m

(k)
j

2 + η2
)d
j=1

with d = 2n − 1. To compute the dual problem we write the Lagrangian function using
the Lagrange multipliers α ∈ Rp

+, β ∈ Rq, µ ∈ R, and t ∈ Rp
+, u ∈ Rq

+, v ∈ Rq
+ respec-

tively associated to constraints (3.28),(3.29),(3.30) and (3.31). To simplify notations, Γ
denotes the concatenation of variables (α, β, µ). Then, we have:

L(m, ϵ, ϵ+, ϵ−,Γ, t, u, v) = 1⊤ϵ+ 1⊤(ϵ+ + ϵ−) + λ

2m
⊤(γ−1

k ∗m) + α⊤(δ1−∆⊤
Pm− ϵ)

−β⊤(∆I
⊤m+ ϵ+ − ϵ−)− µ(m⊤1− 1)− t⊤ϵ− u⊤ϵ+ − v⊤ϵ− (3.32)

From Theorem 3.2, optimal solutions of the dual and primal problems necessarily satisfy
the stationarity KKT conditions, i.e.,:

∇mL = λ(γ−1
k ∗m)−∆Pα−∆Iβ − µ1 = 0 =⇒ m = 1

λ
γk ∗QΓ (3.33)

∇ϵ+L = 1− β − u = 0 (3.34)
∇ϵ−L = 1 + β − v = 0 (3.35)
∇ϵL = 1− α− t = 0 (3.36)

Introducing these equations in Equation (3.32), we obtain:

L(m, ϵ, ϵ+, ϵ−,Γ, t, u, v) = − 1
2λΓ⊤Q⊤(γk ∗Q)Γ + Γ⊤L
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Therefore, the dual problem, denoted by Dk, reads as follows:

(Dk) max
Γ=(α,β,µ)∈Rp+q+1,(t,u,v)∈Rp+2q

+

− 1
2λΓ⊤Q⊤(γk ∗Q)Γ + Γ⊤L

1− α− t = 0

1− β − u = 0

1 + β − v = 0

α ≥ 0

Since t, u, v do not appear in the objective function, Dk can be expressed as an optimization
involving only Γ as variables:

(Dk) max
Γ=(α,β,µ)∈Rp+q+1

− 1
2λΓ⊤Q⊤(γk ∗Q)Γ + Γ⊤L

0 ≤ α ≤ 1

−1 ≤ β ≤ 1

Then Dk is a concave quadratic optimization problem with p+q+1 variables and 2(p+q)
box constraints.

Remark 3.4 (support vectors). From the complementary slackness KKT condition (see
Theorem 3.2), optimal solutions of the dual and primal problems verify:


αℓ(δ − ϵℓ −m⊤∆ℓ) = 0, ℓ = 1, . . . , p

tℓϵℓ = 0⇔ (1− αℓ)ϵℓ = 0, ℓ = 1, . . . , p

0 ≤ αℓ ≤ 1, ϵℓ ≥ 0, ℓ = 1, . . . , p

Then, for any preference example ℓ ∈ P (i.e., such that xℓ ≿ x′ℓ), if the learned model
predicts a strict preference i.e., m⊤∆ℓ − δ > 0⇔ m⊤ϕ(xℓ) > m⊤ϕ(x′ℓ) + δ, then αℓ = 0.
Therefore, the optimal dual variable α is a sparse vector whose non-null components
correspond to the preference examples the learned model m is incompatible with (or for
which it predicts indifference, up to a margin of δ). In the SVM context, these non-null
dual variables are referred to as the support vectors (for instance see [Shawe-Taylor et al.,
2004] Chapter 7).

Towards higher dimensions. For a high number of viewpoints n, the computation of
the matrix Q⊤(γk∗Q) raises an issue since Q and γk have d = 2n−1 rows. More precisely,
this dot product requires a number of operations in O(2n(p+ q+ 1)2), in addition to the
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computation of Q itself. However, at the first iteration of the IRLS sequence, the matrix
Q⊤(γk ∗Q) reduces to the kernel matrix associated to the mapping function ϕ̃ : X 2 → R
such that for any pair x, x′ ∈ X 2, ϕ̃(x, x′) = ϕ(x) − ϕ(x′). Indeed, taking m(0) = 1

d
1 we

have:

Q⊤(γ0 ∗Q) =
√
d−2 + η2


∆⊤
P∆P ∆⊤

P∆I ∆⊤
P1

∆⊤
I ∆P ∆⊤

I ∆I ∆⊤
I 1

1⊤∆P 1⊤∆I 1⊤1

 (3.37)

=
√
d−2 + η2


KPP KPI KPS

KIP KII KIS

KSP KSI KIS


where S is a set containing the index of the pair (xℓ, x′ℓ) = (1,0), and for any index set
A1, A2 ∈ {P, I,S}, KA1A2 is a kernel matrix of size |A1| × |A2| such that:

(KA1A2)ℓ,j = κ((xℓ, x′ℓ), (xj, x′j)), (ℓ, j) ∈ A1 × A2

with κ : X 2 ×X 2 → R the kernel function attached to ϕ̃, i.e.:

κ((xℓ, x′ℓ), (xj, x′j)) = ϕ̃(xℓ, x′ℓ)⊤ϕ̃(xj, x′j)
= ϕ(xℓ)⊤ϕ(xj) + ϕ(x′ℓ)⊤ϕ(x′j)− ϕ(xℓ)⊤ϕ(x′j)− ϕ(x′ℓ)⊤ϕ(xj)

Remark 3.5 (preference kernel). The function κ assigns a measure of similarity to each
pair of preference or indifference examples, (xℓ, x′ℓ) and (xj, x′j), in the space induced by
the projection function ϕ̃. In other words, κ((xℓ, x′ℓ), (xj, x′j)) increases as the difference
between ϕ(xℓ) and ϕ(x′ℓ) becomes closer to the difference between ϕ(xj) and ϕ(x′j), thus
suggesting that the preference relation between xℓ and x′ℓ should resemble that between xj

and x′j. Such preference kernel can also be encountered in the SVM-based approaches for
learning utility functions from pairwise comparisons [Waegeman et al., 2009, Domshlak
and Joachims, 2012].

Hence, by Equation 3.37, the computation of the matrix Q⊤(γ0 ∗Q) solely involves
the computation of inner products of the form ϕ(x)⊤ϕ(x). Therefore, similarly as in the
SVM kernel trick (see Subsection 2.2.2), we can exploit direct computations of the inner
products. A computation in O(n2) is known for the case of the Choquet integral [Tehrani
et al., 2014b], i.e., for ϕS(xS) = mini∈S{xi}, S ⊆ N :
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Proposition 3.3 (see Section 3 in [Tehrani et al., 2014b]).

ϕ(x)⊤ϕ(x) = x⊤x′ +
n−1∑
i=1

x(i)


n−i∑
j=1

2n−i−j ·min
{
x′

(i), x
′
[j+1]i

}
where (.) is a permutation of N such that x(i) ≤ x(i+1) and [.]i are permutations sorting
each vector (x′

(i+1), . . . , x
′
(n)) by increasing order.

This formula can also be used to obtain a polynomial computation of ϕ(x)⊤ϕ(x) when
ϕS(xS) = maxi∈S{xi} since maxi∈S{xi} = −mini∈S{−xi}. In addition, we provide a
polynomial computation for the multilinear utility, i.e., for ϕS(xS) = ∏

i∈S xi, S ⊆ N in
the following proposition:

Proposition 3.4. When ϕS(xS) = ∏
i∈S xi, S ⊆ N , we have:

ϕ(x)⊤ϕ(x) =
∑
S⊆N

∏
i∈S

xi
∏
i∈S

x′
i =

n∏
i=1

(xix′
i + 1)− 1

Then ϕ(x)⊤ϕ(x) can be computed in O(n).

Proof. We provide a proof by induction. For n = 1, ϕ(x)⊤ϕ(x) = x1x
′
1 = ∏1

i=1(xix′
i +

1)− 1. Now let us assume that the property is valid for some n ∈ N. For n+ 1, we have:

n+1∏
i=1

(xix′
i + 1) = (xn+1x

′
n+1 + 1)

n∏
i=1

(xix′
i + 1)

= (xn+1x
′
n+1 + 1)(

∑
S⊆N

∏
i∈S

xi
∏
i∈S

x′
i + 1)

=
∑
S⊆N

∏
i∈S

xn+1xi
∏
i∈S

x′
n+1x

′
i + xn+1x

′
n+1 +

∑
S⊆N

∏
i∈S

xi
∏
i∈S

x′
i + 1

=
∑
S⊆N

∏
i∈S∪{n+1}

xi
∏

i∈S∪{n+1}
x′
i + xn+1x

′
n+1 +

∑
S⊆N

∏
i∈S

xi
∏
i∈S

x′
i + 1

=
∑

S⊆N∪{n+1}

∏
i∈S

xi
∏
i∈S

x′
i + 1.

This kernel also appears in [Shawe-Taylor et al., 2004] (Chapter 9), under the name of
all-subset kernel.

Taking into consideration these polynomial computations, we propose to proceed
to a kernelized computation of matrix Q⊤(γk ∗ Q) for the first iteration of the IRLS
sequence, yielding a number of operations in O(n(p+ q + 1)2) for the multilinear utility
and in O(n2(p + q + 1)2) for the Choquet integral, instead of O(2n(p + q + 1)2) for the
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unkernelized version. This provides a way to perform a dimension reduction since non-
significant coefficients (whose absolute values are lower than some threshold ν) obtained
after this first iteration can be discarded before going on. It is important to note that
this dimension reduction step requires evaluating the learned model in the primal space
using Equation 3.33, i.e., computing m(1) = 1

λ
γ0 ∗ QΓ, yielding a partial kernelization,

as Q, and thus the vectors ϕ(x), have to be explicitly computed. In the next section,
we show that this partial kernelization is adequate for handling problems with more
than 20 viewpoints, which, as far as we know, has never been done in the literature on
capacity-based preference model learning.

Before that, we give the overall learning algorithm in Algorithm 3.2 where for the
sake of clarity, the following notation is used for any matrix K:

sol(K) := arg max
Γ∈[0,1]p×[−1,1]q×R

− 1
2λΓ⊤KΓ + Γ⊤L

Algorithm 3.2: Dual IRLS Algorithm
Inputs: D = {(xℓ, x′ℓ)}ℓ∈P∪I∪S , κ, ϕ, λ, η, ϵ, ν, δ, d

// Initialization
Q← (ϕ(xℓ)− ϕ(x′ℓ))ℓ∈P∪I∪S , L← (δ1,0, 1)
k, m(0), γ0 ← 0, d−11,

√
d−2 + η21

// First iteration of the IRLS sequence
K ← (

√
d−2 + η2κ((xℓ, x′ℓ), (xj, x′j)))ℓ,j∈P∪I∪S

Γ∗ ← sol(K)
k, m(1) ← 1, 1

λ
γ0 ∗QΓ∗

// Dimension reduction
A ←

{
j
∣∣∣ |m(1)

j | > ν, j = 1, . . . , d
}

m(1), Q← (m(j)
1 )j∈A, (Qj)j∈A

m(1) ← m(1)/1⊤m(1)

// IRLS sequence
while ∥m(k) −m(k−1)∥2 > ϵ do

γk ← (
√

(m(k)
j )2 + η2)j∈A

K ← Q⊤(γk ∗Q)
Γ∗ ← sol(K)
m(k+1) ← 1

λ
γk ∗QΓ∗

k ← k + 1
Outputs: m(k)

Remark 3.6 (dimension reduction). Performing an initial coefficient selection after the
first iteration appears to be a reasonable option, as the first iteration corresponds to
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the ℓ2-regularized version of the learning problem P . Indeed, while being unable to
provide sparse solution, the ℓ2-regularization is known to successfully help capturing the
underlying structure of the data. In the context of linear regression, the ℓ2-regularized
solution is viewed as a reliable witness of the relative coefficients importance and is used
to weight the ℓ1-regularization in the adaptive LASSO [Zou, 2006] to improve coefficient
selection in the presence of correlated features. This behavior was also demonstrated
in practice for the learning of Choquet integrals (in Chapter 2, see Section 2.2.3 for
the formulation of the adaptive ℓ1-regularized preference learning problem and Section
3 for numerical experiments). However, a too large threshold hyperparameter ν could
obviously prematurely exclude important coefficients. On the other side, a too small
threshold could yield too large matrices Q. Therefore, in practice, we select the value
of ν leading to an optimal tradeoff between training time and test error (using cross-
validation).

For the sake of completeness, we also provide below a variant of the algorithm in
the regression setting.

Counterpart algorithm in the regression setting In what follows, we consider a
dataset of alternatives and overall evaluations {xℓ, yℓ}tℓ=1 with xℓ ∈ X , yℓ ∈ R. In this
case, the initial learning problem can be formulated as follows using the δ-insensitive loss
for any δ ≥ 0 (see also Subsection 2.1.2 in Chapter 4):

(P) min
m∈R2n−1

t∑
ℓ=1

[δ − |m⊤ϕ(xℓ)− yℓ|]+ + λ∥m∥1 (3.38)

Then, the regression errors can be linearized using auxiliary variables ϵ+
ℓ , ϵ

−
ℓ ≥ 0, ℓ =

1, . . . , t as follows:

(P) min
m∈R2n−1,ϵ+∈Rt

+,ϵ
−∈Rt

+

t∑
ℓ=1

(ϵ+
ℓ + ϵ−

ℓ ) + λ∥m∥1 (3.39)

yℓ −m⊤ϕ(xℓ) ≤ δ + ϵ+
ℓ , ℓ = 1, . . . , t

m⊤ϕ(xℓ)− yℓ ≤ δ + ϵ−
ℓ , ℓ = 1, . . . , t

Then, Proposition 3.1 can be readily adapted to show that, similarly to the pref-
erence setting, by combining the quadratic variational formulation of the ℓ1-norm (see
Equation 3.9) with the alternating minimization algorithm (see Algorithm 3.1), we obtain
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a sequence of least-squares problems defined for any k ≥ 0 and η > 0 as follows:

(Pk) min
m∈R2n−1,ϵ+∈Rt

+,ϵ
−∈Rt

+

t∑
ℓ=1

(ϵ−
ℓ + ϵ+

ℓ ) + λ

2

2n−1∑
j=1

m2
j√

(m(k)
j )2 + η2

yℓ −m⊤ϕ(xℓ) ≤ δ + ϵ+
ℓ , ℓ = 1, . . . , t

m⊤ϕ(xℓ)− yℓ ≤ δ + ϵ−
ℓ , ℓ = 1, . . . , t

Pk coincides with a support vector regression problem (i.e., the regression counter-
part of SVM, described in more detail in Subsection 2.1.2 of Chapter 4), with a weighted

ℓ2-regularization using the weights γ−1
k =

(
1/
√
m

(k)
j

2 + η2
)d
j=1

, where d = 2n − 1. Then,
it can easily be checked that Pk admits the following dual formulation:

max
µ+,µ−∈[0,1]t

− 1
2λ(µ+ − µ−)⊤K(µ+ − µ−) + Y ⊤(µ+ − µ−)− δ1⊤(µ+ + µ−) (3.40)

with K = Φ(γk ∗ ΦT ) ∈ Rt×t, Φ = (ϕ(xℓ))tℓ=1 ∈ Rt×d, and Y = (yℓ)tℓ=1 ∈ Rt.
For k = 0, taking m(0) = 1

d
1, we have: K = Φ(γ0 ∗ΦT ) =

√
d−2 + η2(κ(xℓ, x′ℓ))tℓ,ℓ′=1

with κ(x, x′) = ϕ(x)Tϕ(x′) that can be computed in polynomial time in n with Equation
3.3 or Equation 3.4 depending on the chosen interaction function ϕ, for any x, x′ ∈ X .
Finally, let sol(K) denotes the solution of Problem 3.40 for any kernel matrix K, then
the D-IRLS algorithm for the regression setting is given in Algorithm 3.3

Enforcing monotonicity. In the initial learning problem P (see Section 1 for the pref-
erence setting or Problem 3.38 for the regression setting), monotonicity constraints have
been omitted. However, even if monotonicity constraints on the capacity are omitted,
it is likely that the learning algorithm captures the monotonicity of the preference ex-
amples. It has been observed in practice with the Choquet kernel SVM [Tehrani, 2021]
where the learned models achieve low monotonicity violation rates when the training
data does not violate monotonicity. However, if for normative reasons, we must guar-
antee that monotonicity w.r.t weak Pareto-dominance holds for all possible alternatives,
hard monotonicity constraints must be put on the capacity.

Recall that the monotonicity of any capacity w can be guaranteed by asking that
for any viewpoint coalition S ⊆ N , removing a viewpoint i ∈ S cannot increase the
capacity value, i.e., w(S) ≥ w(S \ {i}). These constraints translate in terms of the
Möbius transform m by ∑T⊆S,T∋im(T ) ≥ 0, ∀i ∈ S,∀S ⊆ N , using w(S) = ∑

T⊆Sm(T ).
Therefore, if C(n) denotes the number of monotonicity constraints for n viewpoints, we
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Algorithm 3.3: Dual IRLS algorithm in the regression setting
Inputs: D = {(xℓ, yℓ)}tℓ=1, κ, ϕ, λ, η, ϵ, ν, δ, d

// Initialization
Φ← (ϕ(xℓ))tℓ=1, Y = (yℓ)tℓ=1
k, m(0), γ0 ← 0, d−11,

√
d−2 + η21

// First iteration of the IRLS sequence
K ← (

√
d−2 + η2κ(xℓ, x′ℓ))tℓ,ℓ′=1

µ+, µ− ← sol(K)
k, m(1) ← 1, 1

λ
γ0 ∗ ΦT (µ+ − µ−)

// Dimension reduction
A ←

{
j
∣∣∣ |m(1)

j | > ν, j = 1, . . . , d
}

m(1),Φ← (m(j)
1 )j∈A, (Φj)j∈A

m(1) ← m(1)/1⊤m(1)

// IRLS sequence
while ∥m(k) −m(k−1)∥2 > ϵ do

γk ← (
√

(m(k)
j )2 + η2)j∈A

K ← Φ(γk ∗ ΦT )
µ+, µ− ← sol(K)
m(k+1) ← 1

λ
γk ∗ ΦT (µ+ − µ−)

k ← k + 1
Outputs: m(k)

have:

C(n) =
n∑
k=1

k

(
n

k

)
(3.41)

Including in P this set of constraints induces a dual problem Dk with p+q+1+C(n)
variables, since each constraint of the primal induces a dual variable. Thus the dualization
benefit is lost and one may prefer a direct solving of P with linear programming (LP), as
proposed in Subsection 2.2.3 of Chapter 2. Still, the exponential number of variables and
constraints is an obstacle to scalability. Hence we propose to handle the monotonicity
constraints throughout a constraint generation algorithm (also known as cutting-plane
algorithm) that allows an optimal solution to be reached while incorporating only a small
portion of the entire set of constraints [Jünger et al., 1993].

The algorithm is initialized with a solution of P found without monotonicity con-
straints. Then, at each iteration, if the current solution does not verify monotonicity
constraints, a violated constraint is inserted in P , and the problem is resolved again.
If, however, the current solution does verify monotonicity constraints, then the current
solution is the optimal solution of the fully constrained optimization problem and the
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algorithm stops. This iterative procedure is formally given in Algorithm 3.4, where Ck
refers to the index set of monotonicity constraints inserted up to iteration k and PCk

is
the optimization problem P with the inserted constraints.

Algorithm 3.4: Constraint Generation Algorithm
C0 ← ∅
m(0) ← solution of PC0 (obtained with LP)
while m(k) does not verify monotonicity constraints do

c← index of a violated constraint
Ck+1 ← Ck ∪ {c}
m(k+1) ← solution of PCk

(obtained with LP)
k ← k + 1

Outputs: m(k)

The next section presents numerical evidence of the benefits of the Dual IRLS
method (Algorithm 3.2) when monotonicity constraints are relaxed, and of the constraint
generation algorithm (Algorithm 3.4) when monotonicity constraints are enforced

3 Numerical Tests

3.1 Synthetic Preference Data

In this subsection we present the results of numerical tests performed on synthetic
preference data. We first test the ability of the dual IRLS method (see Algorithm 3.2),
denoted by D-IRLS, to learn a multilinear utility or a Choquet integral for a growing
number of viewpoints. We compare it to an exact solving of P with LP (see Problem 3.8
for the linearized problem), denoted by ES. Preference data is generated using the process
detailed in Subsection 3.1 of Chapter 2 (see Paragraph Data generation for learning the
capacity). We set the size of the training sets to p = q = 250 and of the test sets to
p = 1000 and q = 0. The generalizing performances of the learned models are assessed
with the test error, computed here as the proportion of inverted preferences in the test
set.

The linear and quadratic optimization tasks are conducted using the mathematical
programming Gurobi solver (version 9.1.2) on a 2.8 GHz Intel Core i7 processor with
16GB RAM. For both learning methods, the ℓ1-norm regularization parameter λ is set
to λ = 1. For the D-IRLS method, the smoothing parameter is set to η = 10−50, the
termination parameter is ϵ = 10−3 and the thresholding parameter is set to ν = 10−5.

Training time and generalizing performance. In the first experiment, we generate
10 training/test sets and evaluate the average training time of both algorithms as well as
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n C̃(n) C(n) Time ESG Time ESC

6 3.2±6.4 192 0.6±0.2 0.6±0.1
9 2.4±7.2 2304 4.2±1.9 18.0±4.6
12 151.9±222.2 24576 61.0±30.4 1212.6±247.6
15 2777.6±4326.5 245760 3448.6±5613.1 -

Table 3.1: C(n),C̃(n) and training times (sec.) for ESG and ESC.

the generalizing performances of the learned models. In order to evaluate the scalability
of our method we vary the number of viewpoints from n = 7 to n = 22. Figure 3.2 (resp.
Figure 3.3) shows the results for the learning of the Choquet integral in its conjunctive
form (resp. of the multilinear utility). More precisely, in Figure 6.2,6.4, are represented
for both models the average training times, in red for ES and green for D-IRLS, while
we show the test error in Figure 6.3,6.5, also in green for D-IRLS and in pink for ES.
We observe that for both decision models ES does not provide any solution after n = 17.
However, D-IRLS allows more than 4 millions of coefficients (n = 22) to be learned
in less than 450 seconds. In contrast we observe that the generalizing performances of
the learned decision models obtained with D-IRLS and ES are comparable. Since the
number of training preference examples is constant, the test error globally increases with
the number of viewpoints for both methods. Finally, we can notice that the test errors
obtained for the learning of the multilinear utility are higher than the ones obtained for
the learning of the Choquet integral.

Enforcing monotonicity In a second experiment, we assess the computational ef-
ficiency of the constraint generation algorithm (see Algorithm 3.4) used to guarantee
monotonicity. We use the same experimental setting as above and let n vary from 6 to
15. We compare the exact solving of P under all monotonicity constraints (denoted ESC)
with the exact solving of P with constraint generation (denoted ESG). Both are solved
using LP. In Table 3.1 we compare C(n) the total number of monotonicity constraints
in ESC, and C̃(n) the average number of constraints generated in ESG. The best results
are highlighted in bold. We observe that ESC (including all constraints) is slower for
n = 6, 9, 12 than ES and limited to n = 12. ESG performs significantly better (up to 15
viewpoints) due to the progressive introduction of monotonicity constraints. We observe
that only a small fraction of the entire set of monotonicity constraints are inserted before
reaching an optimal and fully monotonic capacity.

Comparison with k-additive models. The advantage of using sparse models with
possible large interactions instead of k-additive models is illustrated in Table 3.2 where

130



Chapter 3. A Unified Approach to Learn Sparse Preference Models with Interactions

(a)

(b)

Figure 3.2: Training time (avg.) and test error (boxplot) for D-IRLS and ES with the
Choquet Integral.
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(a)

(b)

Figure 3.3: Training time (avg.) and test error (boxplot) for D-IRLS and ES with the
multilinear utility.

we compare our method (D-IRLS) to an exact solving of P with k-additivity constraints
(denoted by k-add) for k = 2 and k = 3, still under the same experimental setting.
With D-IRLS, the generalizing performance is significantly improved compared to k-add,
while computation times remain admissible for n ≤ 12, and gets better for larger n (i.e.,
n ≥ 16).

Mixing different models of interactions. The proposed methods allow learning an
instance of model Fm defined by Equation 6.1, with a chosen interaction function ϕS

defining the nature of interaction terms, that may be the min,max, product, or any
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Test Error Training time

n D-IRLS 2-add 3-add D-IRLS 2-add 3-add

8 0.04 0.10 0.06 28.22 1.33 1.40
12 0.04 0.17 0.23 122.53 20.96 21.34
16 0.06 0.22 0.49 187.79 345.13 346.78

Table 3.2: Average test error and training time of D-IRLS in comparison to k-add models.

given monotonic function. However, several interaction functions may coexist in the
same preference model, and thus allowing for different types of interactions in Fm could
provide a benefit in terms of sparsity of the learned representations.

As an illustration, we consider the Hurwicz criterion [Hurwicz, 1951], which is
standardly used to make a tradeoff between the worst and the best components, i.e.,

h(x) = αmin
i∈N
{xi}+ (1− α) max

i∈N
{xi}, 0 ≤ α ≤ 1 (3.42)

Although the term mini∈N{xi} (resp. maxi∈N{xi}) term in h admits a sparse rep-
resentation in the Fm model using the interaction function ϕS(xS) = mini∈S{xi} (resp.
ϕS(xS) = maxi∈S{xi}), this is not the case of h that includes both terms. This sug-
gests extending the model Fm defined in Equation 6.1 to include simultaneously several
instances of ϕS (like min and max).

The Choquet integral already provides a framework for such modeling. Indeed,
if we write w = w∧ + w∨ with (w∧,w∨) two sub-normalized capacities (i.e., such that
w∧(N) + w∨(N) = 1), we have Cw(x) = Cw∧(x) + Cw∨(x). Then, using the conjunctive
form of the Choquet integral (see Equation 3.2) for Cw∧(x) and the disjunctive form
(see Equation 3.3) for Cw∨(x), Cw reads as a sum of interaction terms with two types of
interactions:

Cw(x) =
∑
S⊆N

(mw∧(S) min
i∈S
{xi}+mw̄∨(S) max

i∈S
{xi}) (3.43)

This formulation deliberately includes redundancy terms to facilitate the emergence of
sparse formulations. For instance, the Hurwicz model h of Equation 3.43 is a particular
case of Equation 3.43 with only two non-null coefficients, mw∧(N) and mw̄∨(N).

Using this formulation, the proposed learning method can be adapted to obtain a
sparse representation of Cw possibly including both conjunctive and disjunctive terms. To
this end, we solve a variant of problem P using the double Möbius vector (m∧,m∨) and
the double ℓ1-regularization term λ∧∥m∧∥1+λ∨∥m∨∥1 under the normalization constraint
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Figure 3.4: Selection path for the learning of the Hurwicz model.

(m∧ +m∨)⊤1 = 1.
This variant is evaluated on synthetic preference data generated using the Hurwicz

model for α = 0.5 (see Equation 3.42) for n = 8. In Figure 3.4 we provide the regulariza-
tion path obtained for an increasing level of regularization, i.e., we represent the learned
coefficient values (m∧

j ,m
∨
j ), j = 1, . . . , 2n − 1 w.r.t. to the regularization hyperparameter

λ = λ∧ = λ∨. The non-null ground truth coefficients attached to the mini∈N{xi} and
maxi∈N{xi} terms (i.e., mw∧(N) and mw̄∨(N)) are highlighted with star markers. As
expected, a model including only these two factors is progressively emerging with the
increase of the regularization level.

Besides, this model clearly illustrates the idea that considering only small interac-
tions (with k-additivity constraints) is limiting since h presents interaction terms involv-
ing the entire set of viewpoints and cannot be simply approximated by interactions on
smaller sets.

3.2 Application to Judicial Decision-Making in Divorce Cases

In this section, we focus on a particular application case that is the problem of
predicting the compensatory allowance (“prestation compensatoire” in French) set by
the judge in divorce proceedings 2. The compensatory allowance (CA) is an amount

2This case study is a collaborative work with Fabien Tarissan, Isabelle Sayn and Patrice Perny, which
was the subject of the presentation Leveraging the Choquet Integral for Analyzing Court Decisions in
Divorce Cases at ESELS 2025 (European Society for Empirical Legal Studies https://esels.eu/).
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intended, according to Article 270 of the French Civil Code, to “compensate, as far as
possible, for the disparity that the breakdown of the marriage creates in the respective
living conditions.” This amount, expressed in euros, must be paid either as a lump sum
or as a regular annuity by one spouse to the other. When the spouses fail to reach
an agreement on the amount, it is then up to the judge to determine it based on their
assessment of the disparity in living standards that the dissolution of the marriage is
likely to cause between the spouses.

This decision-making task is known to be challenging, notably due to the ambiguity
of the Civil Code regarding how the amount should be determined. The Code sets out
a general principle: “The compensatory allowance is determined based on the needs of
the spouse to whom it is paid and the resources of the other, taking into account the
situation at the time of the divorce and how it may evolve in the foreseeable future. . . ”
(Article 271). It also provides a non-exhaustive list of elements to consider, such as the
duration of the marriage, the age and health of the spouses, their retirement situation,
and their professional situation and trajectories, as well as the impact of time devoted to
the children or to the development of the other spouse’s career on these trajectories (“the
consequences of the professional choices made by one of the spouses during the marriage,
whether to care for the children and the time that will still need to be devoted to them,
or to support the career of their partner at the expense of their own,” Art. 271). For this
reason, numerous unofficial scales have emerged, but rather than resolving the ambiguity,
they tend to increase it by often yielding divergent results [Sayn, 2018].

This study focuses in particular on the COMPRES 3 dataset, co-constructed by the
Bureau for Theoretical and Applied Economics, the Centre de Recherches Critiques sur
le Droit (Critical Legal Research Center) and the statistical department of the French
Ministry of Justice. This dataset contains 5,453 judicial decisions issued by tribunaux
de grande instance in 2013 across France, described by hundreds of variables [Jeandidier
et al., 2020, Bourreau-Dubois et al., 2022, Jeandidier, 2024]. From this dataset, we use
a subset of 772 divorce cases in which there was a disagreement over the CA, ultimately
leading the judge to determine the amount. This dataset also includes only cases where
the CA was awarded to the wife (the reverse situation represents only 4% of cases). Fur-
thermore, we focus on 25 variables selected by domain experts (authors of the previously
cited works), a few examples of which are provided below (the full list is available in
Appendix B):

- Requested amount

- Offered amount

3https://anr.fr/Projet-ANR-12-BSH1-0002
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- Age of the spouses

- Health status of the spouses

- Number of dependent children

- Difference in living standards

Existing attempts to predict the CA in the literature show that the task is challeng-
ing [Jeandidier et al., 2020, Bourreau-Dubois et al., 2022, Jeandidier, 2024]. In particular,
least squares linear regression applied to 14 of the 25 selected predictors yields an absolute
relative error between predicted and true CA exceeding 60% on average over the dataset
[Jeandidier, 2024]. Therefore, this study aims to evaluate to what extent a capacity-based
preference model, more expressive than a linear model due to its ability to capture poten-
tial interactions between variables, yet remaining interpretable and simple through the
learning of a sparse Möbius capacity representation, can improve predictive performance
and our understanding of the underlying decision-making mechanisms. In the following,
we first describe the experimental setting and then provide the numerical results.

Data pre-processing First, the dataset is reduced to t = 647 examples by removing
cases with missing values. Then, to represent each decision case as an evaluation vector
(x1, . . . , xn), where xi denotes the performance with respect to criterion i, expressed on
a common scale across all criteria, the variables known to have a negative impact on the
CA (as identified by domain experts) are multiplied by −1 (see Table 8.4 in Appendix B).
Subsequently, each column is standardized, i.e., for any i ∈ N , the transformation xℓi ←

(xℓi −µi)/σi, for ℓ = 1, . . . , t, with µi = 1
t

∑t
ℓ=1 x

ℓ
i and σi =

√
1
t

∑t
ℓ=1

(
xℓi − µi

)2
is applied.

Model specification The tests are conducted using the Choquet integral, i.e., ΦS(xS) =
mini∈S{xi}, as the results obtained were better than those achieved with the multilinear
utility. Furthermore, as n = 25 is too high to compute the vectors Φ(xℓ), ℓ = 1, . . . , t of
size 225 − 1 ≈ 33M , we combine our algorithm with a k-additive constraint for k = 3,
and thus Möbius coefficients mS with |S| > 3 are set to zero.

Algorithms parameters As the data consists of overall evaluation examples given by
the CA set by the judges, we use the variant of D-IRLS for the regression (see Algorithm
3.3). We used ϵ = 1 × 10−10 (with a maximum number of iterations equal to 150), η =
1× 10−50, ν = 0, and (δ, λ) are set by cross-validation. The quadratic programm solved
at each iteration, which reduces to a support vector regression in the regression setting
(see Problem 3.40), is solved using the LIBSVM library [Chang and Lin, 2011]. Finally,
we compared our method to three baselines: least squares linear regression (implemented
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Model Loss Median Error

linear
least square 38.95%± 4.96%
δ-insensitive 34.60%± 4.54%
ℓ1-regularized δ-insensitive 33.25%± 2.74%

Choquet (D-IRLS4) ℓ1-regularized δ-insensitive 31.78% ± 2.43%

Table 3.3: Generalization performance according to the model and loss function.

using the scikit-learn library), a variant employing the same loss function as our
approach (the δ-insensitive loss), and a third variant that combines the δ-insensitive loss
with ℓ1-regularization. The latter two methods are solved via linear programming using
the Gurobi solver. The parameters δ (for the loss) and λ (for the regularization) are also
selected through cross-validation. This setting allows to asses the benefit of using 1) a
different loss function, 2) ℓ1 regularization and 3) an aggregation function accounting for
interactions between variables.

Numerical results All algorithms are assessed according to the median error that
is computed as the median absolute relative error between the predicted and true CA
values on some test sets. The reported value corresponds to the average of this metric
across 5 cross-validation folds. It is also important to note that the predicted value is
systematically adjusted before the comparison with the true value: it is assimilated to
the requested amount if it exceeds it, and to the offered amount if it falls below it. This
is because the amount set by the judge must always lie between the offered and requested
amounts [Jeandidier, 2024].

The results are provided in Table 3.3, where it can be observed that the prediction
task is indeed challenging, as the errors do not fall below 30% for any of the methods.
However, a significant improvement is noted between the first baseline and our method,
which can be attributed to the combined effect of three components: the use of the
δ-insensitive loss, the ℓ1-regularization, and the Choquet integral.

In a second experiment, the same tests are conducted on two distinct subsets of the
dataset: the cases where the CA was set above the median level (i.e., €20k), and those
where it was set below. The results are presented in Tables 3.4 and 3.5, respectively. It
is first observed that the prediction task is easier in the first data group, as the errors
reported in Table 3.4 drop to 23%. While accounting for interactions via the Choquet
integral does not appear to provide any benefit over the linear model (the identical errors

4Following the IRLS algorithm, an additional step is performed, consisting in solving the initial
learning problem (see Problem 3.39 in Appendix B) by linear programming using the Gurobi solver,
based solely on the variables selected by D-IRLS (otherwise, the performance is slightly lower).
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between D-IRLS and the third baseline indicate that it returns the same, hence linear,
model), the contribution of ℓ1-regularization appears to be critical. Indeed, with only two
variables (namely, the requested amount and offered amounts), the best generaliza-
tion performance is achieved. Then, in Table 3.5, we observe that the errors are higher,
indicating that the most difficult cases to predict are those in which the awarded CA is
below the median. However, accounting for interactions leads to a clear improvement in
performance, while also allowing the use of fewer variables (10 compared to 25 for the
linear models).

Model Loss Median Error Nb. of selected var.

linear
least square 29.22%± 4.92% 25
δ-insensitive 26.36%± 5.20% 25
ℓ1-regularized δ-insensitive 23.31% ± 4.39% 2

Choquet ℓ1-regularized δ-insensitive 23.31% ± 4.39% 2

Table 3.4: Generalization performance on cases with CA above the median.

Model Loss Median Error Nb. of selected var.

linear
least square 30.13%± 5.45% 25
δ-insensitive 32.59%± 5.87% 25
ℓ1-regularized δ-insensitive 32.63%± 5.82% 25

Choquet ℓ1-regularized δ-insensitive 27.21% ± 3.26% 10

Table 3.5: Generalization performance on cases with CA below the median.

4 Conclusion

We have addressed the problem of preference learning with interacting viewpoints
by considering a large class of capacity-based decision models including the multilinear
utility and the Choquet integral, known for their expressiveness. We proposed a unified
approach to learn the models of this class based on the search of sparse Möbius repre-
sentations of capacities, leading to simple models with sparse interaction patterns. This
approach applies to instances possibly involving more than 20 viewpoints and allows
the most significant interaction factors to be identified within millions of possibilities.
This represents a significant improvement compared to previous approaches limited to a
dozen of viewpoints. Moreover, the sparsity pattern is revealed from preference examples
instead of resulting from a prior cardinality-based simplification of interactions, which
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greatly enhances the descriptive possibilities. The main directions to extend this work
are:

• going further in scalability: the D-IRLS algorithm requires the solving of quadratic
programs whose size depends on the number of preference examples at each iteration
and therefore, does not scale when the training database exceeds a few hundred.
While this may be sufficient in standard multi-criteria decision-making contexts,
certain situations can involve a very large number of preference examples, such as
in the case of a continuous stream of preference examples linked to user actions
on social networks, search engines, etc. In order to deal with large-scale preference
data, both in terms of the number of viewpoints and the number of examples, and
possibly deal with incoming flows of preference examples, specific approaches are
required. This direction will be investigated in Chapter 6.

• extending the approach to learn the interaction function ϕS from preference data:
interaction terms occurring in the model may be more general than min, max or
product of criterion values, and could also be learned from preference data. In
this case, the term mSϕS(xS) can be seen as a utility factor uS(xS) in an additive
decomposition of the form ∑

S⊆N uS(xS). This leads to the problem of learning
GAI-decomposable utility functions (see Subsection 1.4 of Chapter 1), which is the
topic of the next chapter.
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Summary

In this chapter, we focus on the GAI-decomposable utility function model which
allows completely general interactions between attributes while preserving some addi-
tive decomposability of the evaluation model. We present a learning approach able to
identify the factors of interacting attributes and to learn the utility functions defined on
these factors. This approach relies on the determination of a sparse representation of
the (classical or anchored) ANOVA decomposition of the multiattribute utility function
using multiple kernel learning. It applies to continuous and discrete attributes, and is
formulated for learning from both overall evaluation and preference examples. Numerical
tests are performed to demonstrate the practical efficiency of the learning approach. This
chapter builds upon and extends the following publication: [Herin et al., 2024b].
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Introduction

In this chapter, we address the problem of learning a general multiattribute utility
function in the presence of interacting attributes, with the aim of keeping the model as
simple and decomposable as possible. To this end, we focus on GAI-decomposable utility
functions [Fishburn, 1970, Bacchus and Grove, 1995] (see Definition 1.18), which consists
of a sum of interaction factors ∑S∈F uS(xS) defined on a collection F of subsets of N
(without any assumption on the kind of interactions). Such a utility model offers great
flexibility in preference modeling, allowing for the capture of complex decision-making
behaviors. On the other hand, maintaining a form of additive decomposability helps keep
the model as simple as possible, allowing for compact preference representations, which
can be exploited to derive efficient elicitation and recommendation procedures [Braziunas
and Boutilier, 2008, Dubus et al., 2009, Brafman and Engel, 2010, Amor et al., 2016].

The construction of a GAI utility model from preference information (overall evalu-
ations or pairwise comparisons) remains a challenge. It requires the determination of the
relevant factors to be used in the decomposition (groups of interacting attributes) as well
as the determination of sub-utility functions on these factors. Some contributions focus
on the elicitation of these sub-utility functions, assuming the decomposition of the utility
into factors is known [Gonzales and Perny, 2004, Braziunas and Boutilier, 2005, Brazi-
unas, 2012]. Some of these elicitation procedures rely on a graphical representation of
GAI decompositions known as GAI-networks [Gonzales and Perny, 2004, Gonzales et al.,
2008], which closely resemble junction graphs used for Bayesian networks [Koller and
Friedman, 2009]. The analogy between probability distribution decompositions (in prod-
uct of marginal distributions) and utility GAI decompositions (in sum of utility factors)
has been further exploited to determine the GAI decomposition using probabilistic graph-
ical model construction algorithms [Brafman and Engel, 2010, Engel and Wellman, 2010].
Alternatively, a procedure to learn the GAI model (decomposition + utility functions)
has been proposed [Bigot et al., 2012] in the case of Boolean attributes and interactions
limited to subsets of bounded size (typically 2 elements). More recently, a procedure
to determine a well-formed decomposition (defined in Subsection 1.1 of this chapter) of
monotonic GAI models was proposed [Grabisch et al., 2022] wherein the interactions are
limited to pairs of attributes. However, until now, the learning of general GAI models
with no prior assumption on the size of the interacting groups of attributes is still un-
derstudied. All the above-mentioned contributions either assume that the structure of
the GAI decomposition is known or that it is limited to interactions involving very few
attributes. Moreover, most of them only consider the case of finite attribute domains.
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Contributions and Organization of the Chapter In this chapter, we propose a
more general procedure to learn a GAI utility model (decomposition + utility functions),
kept as simple as possible, with no prior restriction on the size of interactions, and that
applies to both continuous and discrete attribute domains. This is achieved by learning
sparse ANOVA decompositions [Sobol’, 2001, Kuo et al., 2010] of the utility function
using multiple kernel learning [Lanckriet et al., 2004a, Gönen and Alpaydın, 2011]. More
precisely, to facilitate the interpretation of the utility decomposition, we first propose to
consider a class of uniquely defined functional decompositions, containing in particular
the ANOVA decomposition and its anchored version (Section 1). Then, after introducing
some background on kernel-based methods [Schölkopf, 2002] (Section 2.1), we present
an approach to learn a GAI decomposition with multiple kernel learning from preference
data either under the form of overall evaluations or pairwise comparison examples (Section
2.2). Finally, we show the benefit of the proposed approach on synthetic and real data
(Section 3).

Notations As in the previous chapters, N denotes the set of attributes, i.e., N =
{1, . . . , n}, and alternatives are represented by vectors x ∈ X = X1 × . . . × Xn, where
Xi is the domain of the ith attribute. Also, recall that the notation S ⊆ N excludes
the empty set by convention and for any S ⊆ N , the notation XS (resp. xS for any
x ∈ X ) refers to the Cartesian product ×j∈SXj (resp. refers to the restriction of x to
its components in S). To simplify notations, for any S ⊆ N and i ∈ S, S \ {i} (resp.
S \ {i, j}) is denoted by S−i (resp. S−ij), which is further simplified to −i (resp. −ij)
for S = N . Finally, for the sake of simplicity, X is identified to [0, 1]n in this chapter,
therefore for any S ⊆ N , XS = [0, 1]s with s = |S| . This is not restrictive since the
attribute domains Xi, i ∈ N can be numerically encoded and normalized. Note also
that, for any set X, the function 1X(x) denotes the function : x → +∞ if x ∈ X and
0 otherwise. The reader is also assumed to be familiar with the basic concepts of linear
algebra such as a vector space, a linear map, an inner product, and the norm associated
with it (otherwise, we refer to [Lang, 1987] or [Savage, 2018] (lecture notes)). Finally, we
explicitly define below what is understood by an integrable function in this chapter.

Definition 4.1. A continuous function U : X = [0, 1]n → R is said integrable (in the
sense of Lebesgue) if

∫
X |U(x)|dx <∞. By convention, for any S ⊆ N , the integral of U

w.r.t. variables in S only is denoted by
∫
XS
U(x)dxS.
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1 GAI Decomposition

In this chapter, we address the challenge of learning a GAI-decomposable utility
function, i.e., a function U : X → R of the following form:

U(x) =
∑
S∈F

uS(xS), for any x ∈ X (4.1)

where F is a collection of possibly overlapping subsets of N , referred to as a decomposition
of U , and uS : XS → R, S ∈ F are sub-utility factors.

1.1 Non-uniqueness of the GAI Decomposition

Given a multiattribute utility function U defined on X there may exist multiple
distinct GAI decompositions of this function. This is illustrated in the following example:

Example 4.1. Function U(x1, x2, x3, x4) = (x1 − x2)2 + 2x1(x2 + x3) + x4 could be seen
as the sum of the three following factors: u12(x1, x2) = (x1 − x2)2, u123(x1, x2, x3) =
2x1(x2 + x3) and u4(x4) = x4 or rewritten as the sum of four smaller factors, e.g.,
u′

1(x1) = x2
1, u′

2(x2) = x2
2, u′

13(x1, x3) = 2x1x3 and u′
4(x4) = x4. The latter decomposition

is simpler because it includes factors of smaller arity that are subsets of the factors used
in the former decomposition.

The non-uniqueness of the GAI decomposition raises an issue of interpretability,
as different decompositions can lead to different interpretations regarding the nature of
the interactions between attributes. This is well illustrated in Example 4.1 where the
second decomposition U = u′

1 + u′
2 + u′

13 + u′
4, in contrast to the first decomposition

U = u12 + u123 + u4, indicates that there is no interaction within the group of attributes
{1, 2, 3} (nor within {1, 2}).

To further specify what would be a suitable GAI decomposition, one can resort
to the notion of well-formed decomposition [Grabisch et al., 2022], formally defined as
follows:

Definition 4.2. [Grabisch et al., 2022] A GAI decomposition is well-formed if each term
uS appearing in the decomposition satisfies the following conditions:

- each variable in S is active, i.e., the derivative of uS w.r.t. this variable is not
identically 0,

- uS cannot be further additively decomposed into terms involving a proper subset of
variables
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Going back to Example 4.1, the decomposition U = u12 + u123 + u4 is not well-formed
as u12 and u123 can be additively decomposed into terms involving a proper subset of
variables, yielding the second decomposition U = u′

1 + u′
2 + u′

13 + u′
4, that is well-formed.

Focusing on the class of well-formed decompositions allows certain interpretations
to be made. For instance, the existence of a well-formed decomposition without factor uS
for some S ⊆ N suggests an absence of interaction between attributes in S. In particular,
if interactions are restricted to pairwise interactions, the absence of a term ui,j in a well-
formed decomposition is equivalent to a 2-independence between attributes i and j (see
Theorem 1 in [Grabisch et al., 2022]), i.e., for any xi, yi ∈ Xi, xj, yj ∈ Xj, z−ij ∈ X−ij:

((xi, xj, z−ij) , (yi, xj, z−ij) ∼∗ ((xi, yj, z−ij) , (yi, yj, z−ij)) , (4.2)

where for any (a, b), (c, d) ∈ X 2, (a, b) ∼∗ (c, d) reads as “the preference intensity between
a and b equals the one between c and d”, i.e., U(a) − U(b) = U(c) − U(d). In words,
a 2-independency between two attributes is characterized by the fact that changing the
value of the ith attribute from xi to yi induces the same change in utility whether the
value of the jth attribute equals xj or yj, everything other being equal.

However, well-formed decompositions are not uniquely defined. For instance, the
decomposition U = u′

1 + v′
2 +u′

13 +u′
4 is not the unique well-formed decomposition of the

utility function given in Example 4.1, as the decomposition U = u′′
1+u′′

2+u′′
13+u′′

4 such that
u′′

1 = αx2
1, u′′

2 = u′
2, u′′

13 = (1−α)x2
1+x1x3 and u′′

4 = u′
4 is also a well-formed decomposition,

for any α ∈ R. In order to avoid such utility transfers, we propose to consider a family
of uniquely defined decompositions, including the ANOVA decompositions, which we
introduce in the following Subsection.

1.2 ANOVA Decompositions

In this section, we first present the ANOVA (ANalysis Of VAriance) decomposition
in its common form, which we refer to as classical ANOVA (as in [Griebel and Holtz,
2010]). Then, we explore a broader family of decompositions, encompassing, in particular,
the classical ANOVA and the anchored ANOVA decomposition.

1.2.1 Classical ANOVA Decomposition

The (classical) ANOVA decomposition (also known as the Sobol-Hoeffding decompo-
sition) [Hoeffding, 1948, Sobol’, 2001] is a well-known functional decomposition exploited
in particular in global sensitivity analysis [Da Veiga et al., 2021, Razavi et al., 2021], to
quantify the relative importance of variables and their interactions in a model. Below,
we give the ANOVA decomposition as provided in [Sobol’, 2001]:
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Definition 4.3. An ANOVA decomposition of an integrable function U : X → R (see
Definition 4.1) is a representation of U in the form:

U(x) = f∅ +
∑
S⊆N

fS(xS), ∀x ∈ X (4.3)

where for any S ⊆ N and i ∈ S, fS satisfies
∫
Xi
fS(xS−i

, xi)dxi = 0,∀xS−i
∈ XS−i

.

Remark 4.1 (ANalysis Of VAriance). The name ANOVA (ANalysis Of VAriance) comes
from the fact that, if X = (X1, . . . , Xn) is a vector of random inputs, Equation 4.3
allows additively decomposing the variance of a random output Y = U(x) across the
different groups of inputs, thereby providing a way to quantify their influence on the
uncertainty of Y . Specifically, if X1, . . . , Xn are mutually independent and distributed
according to a uniform distribution on X , Equation 4.3 gives U(X) = f∅ +∑

S⊆N fS(XS)
(almost surely) with E[fS(XS)] =

∫
XS
fS(xS)dxS = 0, ∀S ⊆ N . Additionnaly, if U2 is

integrable, for any S ̸= S ′, E[fS(XS)fS′(XS′)] =
∫
XS∪S′ fS(xS)fS′(xS′)dxS∪S′ = 0 and

hence Cov(fS(XS), fS′(XS′)) = E[fS(XS)fS′(XS′)] − E[fS(XS)]E[fS′(XS′)] = 0, yielding
the variance decomposition: Var(Y ) = ∑

S⊆N Var(fS(XS)).

It is important to note that the ANOVA decomposition of an integrable function
U : X → R is uniquely defined. We indeed have f∅ =

∫
X U(x)dx by integrating Equation

4.3. Then, by integrating the same equation over all variables except xi, i ∈ N we obtain
fi(xi) =

∫
X−i

U(x)dx−i − f∅. Now, if we integrate Equation 4.3 on all variables except xi
and xj, for some i, j ∈ N , we obtain fij(xi, xj) =

∫
−ij
U(x)dx−ij − fi(xi) − fj(xj) − f∅.

The process can be continued similarly to identify the factors of higher arity, yielding the
following recursive formula:

fS(xS) =
∫
XS̄

U(x)dxS̄ −
∑
T⊂S

fT (xT ), for any S ⊆ N and any xS ∈ XS (4.4)

Equation 4.4 allows us to interpret the factor fS as the part of U due to some
interaction involving all and only the variables in S. It is computed by integrating U over
variables in S̄ and substracting the contributions already assigned to all proper subsets
T ⊂ S, thereby isolating the unique effect of the interaction between the variables in S.
We now illustrate the ANOVA decomposition computation on simple examples.

146



Chapter 4. Learning GAI-decomposable Utility Functions

Example 4.2. Let U(x) = x1 + x2, then we have:

f∅ =
∫ 1

0

∫ 1

0
(x1 + x2)dx1dx2 = 1

f1(x1) =
∫ 1

0
(x1 + x2)dx2 − f∅ = x1 −

1
2

f2(x2) = x2 −
1
2

f12(x1, x2) = x1 + x2 − f1(x1)− f2(x2)− f∅ = 0

Example 4.3. Now, if we consider the model given in Example 4.1, the same process
leads to the following ANOVA decomposition:

f∅ = 5
3 , f1(x1) = x1 + x2

1 −
5
6 , f2(x2) = x2

2 −
1
3

f3(x3) = x3 −
1
2 , f4(x4) = x4 −

1
2

f13(x1, x3) = 2x1x3 − x1 − x3 −
1
3

where the ungiven factors are null.

For any S ⊆ N , let us now denote by PS the operator that associates to any
integrable function U , the function : xS̄ →

∫
XS
U(xS̄, xS)dxS. Then, by Equation 4.4, we

have that for any S ⊆ N and any xS ∈ XS, PS̄(U)(xS) = ∑
T⊆S fS(xS), and therefore by

the Möbius formula, fS(xS) admits the following explicit definition:

fS (xS) =
∑
T⊆S

(−1)|S|−|T |PT̄ (U)(xT ), for any xS ∈ XS (4.5)

Operator PS associates to any function U , a function that does not depend on the
variables in S by integrating w.r.t. these variables. It is interesting to note that this
operation could be performed in other ways, for instance by setting the variables in S to
some reference values. For this reason, we present in the following the general result of
[Kuo et al., 2010] which shows that a broad class of operators PS can be considered, each
yielding a particular decomposition defined without any ambiguity by Equation 4.5.

1.2.2 A General Decomposition Scheme

In this section, we adopt the formalism of [Kuo et al., 2010] in order to introduce
a more general class of decompositions. For this, we first recall the notion of projector :

Definition 4.4. Let V be a vector space. A projector is a linear application P : V → V

such that P ◦ P = P where ◦ denotes the composition operator. A family of projectors
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P1, . . . , Pn is said commuting if for any i, j ∈ {1, . . . , n},

Pi ◦ Pj = Pj ◦ Pi

Here, we consider a vector space V of real-valued functions f : X → R and com-
muting projectors Pi : V → V , i = 1, . . . , n such that for any i ∈ N , and any f ∈ V :

Pi(f) does not depend on xi, and Pi(f) = f if f does not depend on xi. (4.6)

Note that the fact that a function f does not depend on a variable xi is understood
here as: for any x, y ∈ X , x−i = y−i ⇒ f(x) = f(y) (as in [Kuo et al., 2010]), and
that the projectors are implicitly assumed to be well-defined on V . Finally, for any
S ⊆ N , let PS be the successive composition of the projections Pi, i ∈ S (in an arbitrary
order). The following theorem shows that each such family of projectors induces a unique
decomposition for every function U ∈ V .

Theorem 4.1. (Adapted from [Kuo et al., 2010]). Let U ∈ V and let {Pi}ni=1 be com-
muting projectors satisfying Condition 4.6 and well-defined on V . Then, assume that:

U(x) = f∅ +
∑
S⊆N

fS(xS), ∀x ∈ X (4.7)

where for any S ⊆ N , fS is a function of V depending only on the variables in S and
satisfying for any i ∈ S, Pi(fS)(xS−i

) = 0,∀xS−i
∈ XS−i

. Then, function fS satisfies:

fS (xS) =
∑
T⊆S

(−1)|S|−|T |PT̄ (U)(xT ) = PS̄(U)(xS)−
∑
T⊂S

fT (xT ), ∀xS ∈ XS (4.8)

where the notation fS(xS) omits variables in S̄, on which fS does not depend.

By taking V as vector space of integrable function and Pi(U)(.) =
∫
Xi
U(., xi)dxi

for any U ∈ V , leading to PS(U)(.) =
∫
XS
U(., xS)dxS for any S ⊆ N , we recover the

(classical) ANOVA decomposition. Below, we explore another example.

The anchored ANOVA decomposition Another standard choice is to define Pi as
the operator that freezes variable xi by setting its value at some reference point x0 ∈
dom U , i.e., Pi(U) = U(., x0

i ), yielding PS(U) = U(., x0
S), for any S ⊆ N . The obtained

decomposition is referred to as the anchored ANOVA decomposition, as the factors are
anchored at the reference point [Sobol’, 2003, Kuo et al., 2010, Griebel and Holtz, 2010].
This decomposition scheme is illustrated below on the functions of Example 4.2 and 4.3:
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Example 4.4. Let U(x) = x1 + x2, then its anchored ANOVA decomposition with ref-
erence point x0 = (0, . . . , 0) is:

f∅ = U(0, 0) = 0
f1(x1) = U(x1, 0)− f∅ = x1

f2(x2) = U(0, x2)− f∅ = x2

f12(x1, x2) = U(x1, x2)− f1(x1)− f2(x2)− f∅ = 0

Example 4.5. Now, if we consider the model given in Example 4.1 and 4.3, i.e., U(x1, x2,

x3, x4) = (x1 − x2)2 + 2x1(x2 + x3) + x4, the same process leads to the following decom-
position:

f∅ = U(0, 0, 0, 0) = 0
f1 = U(x1, 0, 0, 0)− f∅ = x2

1, f2 = U(0, x2, 0, 0)− f∅ = x2
2

f3 = U(0, 0, x3, 0)− f∅ = 0, f4 = U(0, 0, 0, x4)− f∅ = x4

f13 = U(x1, 0, x3, 0)− f1 − f3 − f∅ = 2x1x3

where the ungiven factors are null.

It is important to note that the anchored ANOVA decomposition coincides with
already known decompositions of preference models into sum of interaction factors. For
instance, we can remark that the expression of the Choquet integral and the multilinear
model in terms of Möbius masses (see Equation 2.12 and 3.1) corresponds to the anchored
ANOVA decompositions for the reference point (0, . . . , 0) of the functions Cw and MLw
respectively. In these decompositions, the factors indeed both satisfy fS(x−i, 0) = 0
for any x−i ∈ X−i, as they are respectively defined by fS(xS) = mS mini∈S{xi} and
fS(xS) = mS

∏
i∈S xi, where mS is the Möbius mass attached to S.

Also, a related decomposition scheme has been already used for GAI decompositions
[Fishburn, 1967, Braziunas and Boutilier, 2005, Braziunas, 2012], where the reference
point x0 appears under the name of default or basic outcome, and where it is assumed
that U additively decomposes over a known collection of factors F = {I1, . . . , IM}, i.e.,
U(x) = ∑M

j=1 uj(xIj
). In this setting, the utility function can be decomposed as a sum of

sub-utilities that, similarly to the anchored ANOVA, involve freezing U at the reference
point on some attributes [Fishburn, 1967]:

U(x) =
M∑
j=1

(−1)j+1 ∑
K⊆{1,...,M}

|K|=j

P∪k∈K Īk
(U)(x∩k∈KIk

)
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However, in our setting, the decomposition is not presupposed but shall rather be
learned from preference data. To this end, we propose in the following a method for
learning an ANOVA decomposition (whether classical or anchored) of the utility function
using global evaluations or preference examples. The proposed approach leverages kernel-
based learning methods, and in particular multiple kernel learning, which makes it possible
to recover sparse decompositions (i.e., with few non-null factors), and thus obtain compact
and interpretable representations of preferences. Importantly, the method could be easily
applied to the learning of any decomposition of Theorem 4.1.

The next section is organized as follows: we first introduce kernel-based machine
learning techniques in general terms (Subsection 2.1.1), then we explicit the example
of the support vector regression (Subsection 2.1.2), and finally the extension to multiple
kernel learning (Subsection 2.1.3). Then, in Subsection 2.2, we formulate the proposed
approach for learning sparse ANOVA decompositions of utility functions, first using alter-
native overall evaluation examples (i.e., regression examples), and then using preference
examples.

2 Sparse ANOVA Learning with Multiple Kernel
Learning

2.1 Kernel-based Methods and Multiple Kernel Learning

Kernel-based methods gained attention in machine learning with the introduction of
support vector machines [Boser et al., 1992, Vapnik, 1995] (see Subsection 2.2.2 of Chapter
3). Building upon classical results of functional analysis [Mercer, 1909, Aronszajn, 1950,
Kimeldorf and Wahba, 1971], these methods led to numerous developments, including
multiple kernel learning [Lanckriet et al., 2004a, Bach et al., 2004]. This subsection aims
to provide a brief but self-contained introduction to these methods. For a more in-depth
study, the interested reader may refer to the books [Schölkopf, 2002, Shawe-Taylor et al.,
2004, Steinwart, 2008].

2.1.1 Kernel-based Learning Algorithms

Kernel-based learning algorithms can be approached from two different perspec-
tives, which we detail below in the context of a regression task from a set of examples
{(xℓ, yℓ)}tℓ=1, where xℓ ∈ X and yℓ ∈ R.

The mapping function perspective Kernel-based learning algorithms involve em-
bedding the input data into a high-dimensional space H using a (potentially) non-linear
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mapping function ϕ : X → H. The space H, referred to as the feature space, may take on
different forms. For instance, we could have H = Rd with a potentially high dimension
d. Below are examples of mapping functions valued in such a space, which we already
encountered in Subsection 2.2.2 of Chapter 3:

- ϕ(x) = (min
i∈S
{xi})S⊆N of size d = 2n − 1 (4.9)

- ϕ(x) = (
∏
i∈S

xi)S⊆N of size d = 2n − 1 (4.10)

- ϕ(x) = (x2
1, . . . , x

2
n,
√

2xnxn−1, . . . ,
√

2xnx1, . . . ,
√

2x2x1,
√

2xnc, . . . ,
√

2x1c, c) (4.11)

of size d = (n+ 2)(n+ 1)
2

The quadratic mapping function given by Equation 4.11 could be generalized to
consider polynomial features of degree up to some integer d ∈ N∗. Taking a step fur-
ther, ϕ could potentially include all polynomial features of degree d ∈ N, embedding
x in a infinite-dimensional space H. Indeed, the only requirement on H is that it is a
Hilbert space, i.e., a complete1 vector space endowed with an inner product ⟨., .⟩H and
the associated norm ∥.∥H =

√
⟨., .⟩H

The potential non-linearity in the data being captured in ϕ, the learning task
boils down to fitting a linear model in H, i.e., finding the regression function f(x) =
⟨w, ϕ(x)⟩H + b , w ∈ H, b ∈ R that best fits the examples. Specifically, the weight vector
w can be learned by minimizing both the error on the examples and the oscillation of f
in H by solving the following ℓ2-regularized empirical risk minimization problem:

min
w∈H,b∈R

C
t∑

ℓ=1
l(⟨w, ϕ(xℓ)⟩H + b, yℓ) + 1

2∥w∥
2
H (4.12)

where l : R × R → R is a regression loss and the regularization hyperparameter C ∈
R+ allows controlling the tradeoff between fitting the examples well and minimizing
oscillation to prevent overfitting (see Section 3.1.1 of Chapter 1).

Remark 4.2 (Euclidean inner product). For H = Rd, ⟨., .⟩H is the Euclidean inner prod-
uct attached with the Euclidean norm, i.e., ⟨w, ϕ(x)⟩H = w⊤ϕ(x) and ∥w∥2

H = w⊤w.
Also remark that for ϕ(x) = x, f is the linear model f(x) = w⊤x = ∑n

i=1 wixi and for ϕ
given by Equation 4.9 and 4.10, we recover the Choquet integral and multilinear model
(see Equation 2.12 and 3.1 respectively).

A important result is the representer theorem, originally due to [Kimeldorf and
1i.e., for any sequence {xn} ⊂ H whose elements become arbitrarily close in the sense of ∥.∥H when

n→∞, there exists x ∈ H such that limn→∞ xn = x.
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Wahba, 1971]. The latter states that, whileH might be of infinite dimension, any solution
of Problem 4.12 can be characterized by a finite set of variables. The proof is given to
aid comprehension.

Theorem 4.2 (representer theorem). (originally due to [Kimeldorf and Wahba, 1971])
For any solution w of Problem 4.12, there exists (α1, . . . , αt) ∈ Rt such that w =∑t
ℓ=1 αℓϕ(xℓ).

Proof. Let E be the sub-vector space of H defined as the span of (ϕ(x1), . . . , ϕ(xt)) in
H, i.e., E = {∑t

ℓ=1 αℓϕ(xℓ)|(α1, . . . , αt) ∈ Rt}. As E is of finite dimension, H can be
orthogonally decomposed as follows: H = E ⊕ E⊥ , i.e., for any w ∈ H, there exists
u ∈ E, v ∈ E⊥ such that w = u+ v (E⊥ is the space of vector v ∈ H such that ⟨u, v⟩ = 0
for any u ∈ E). Denote by J the objective function of Problem 4.12 and let (w, b) ∈ H×R
be any of its solutions. Then, w = u+ v, u ∈ E, v ∈ E⊥ and since for any ℓ ∈ {1, . . . , t},
⟨v, ϕ(xℓ)⟩H = 0, J(w, b) = J(u, b) + 1

2∥v∥
2
H. Suppose by contradiction that v ̸= 0H, then

∥v∥2
H > 0 and J(u, b) < J(w, b), which contradicts the fact that (w, b) is a solution of

Problem 4.12. Therefore v = 0H and w ∈ E.

Therefore, by Theorem 4.2, the learned function reads as follows:

f(x) = ⟨w, ϕ(x)⟩H + b =
t∑

ℓ=1
αℓ⟨ϕ(xℓ), ϕ(x)⟩H + b

=
t∑

ℓ=1
αℓκ(xℓ, x) + b (4.13)

where for any x, x′ ∈ X , κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H is referred to as the kernel function
attached to ϕ. Intuitively, κ gives a measure of the similarity between x and x′, once
mapped in the space H. Also, let K denotes the kernel matrix associated with κ and
the examples, i.e., Kℓℓ′ = κ(xℓ, xℓ′) for any ℓ, ℓ′ ∈ {1, . . . , t}. Remarking that f(xℓ) =
(Kα)ℓ + b, ℓ = 1, . . . , t and ∥w∥2

H = αTKα, Problem 4.12 can be reformulated as an
optimization problem with finite-dimensional variables:

min
α∈Rt,b∈R

C
t∑

ℓ=1
l((Kα)ℓ + b, yℓ) + 1

2α
TKα (4.14)

Hence, if the computation of the inner products κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H can be
done efficiently, without even requiring the computation of the high-dimensional vectors
ϕ(x), Problem 4.14 provides us with a tractable way of addressing the initial learning
Problem 4.12. We saw in Chapter 3, that it is indeed the case for the mapping functions
given by Equation 4.11, 4.9 and 4.10, respectively corresponding to the quadratic, Choquet
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and multilinear kernel whose formulation is recalled in Table 4.1. We also give the
formulation of the polynomial kernel, whose mapping function is made up of polynomials
of degree d ∈ N∗, and of the Gaussian kernel, whose mapping function can be considered
as an expansion of polynomials whose degree goes to infinity. Note that the polynomial
kernel and its special cases involve an intercept parameter c ∈ R, and the Gaussian kernel
involves a variance parameter σ ∈ R+

∗ .

Kernel name ϕ(x) κ(x, x′)

Linear (x1, . . . , xn,
√
c) x⊤x′ + c

Quadratic
( √

2!√
j1! j2! ··· jn! jn+1!

xj11 x
j2
2 · · ·xjnn

√
c
jn+1

)∑n+1
q=1 jq=2

(x⊤x′ + c)2

Polynomial
( √

d!√
j1! j2! ··· jn! jn+1!

xj11 x
j2
2 · · ·xjnn

√
c
jn+1

)∑n+1
q=1 jq=d

(x⊤x′ + c)d

Gaussian e−
∥x∥2

2
2σ2

((
x

j1
1 x

j2
2 ···xjn

n√
j1! j2! ··· jn!σd

)∑n

q=1 jq=d

)∞

d=0
exp

(
−∥x−x′∥2

2σ2

)

Choquet (mini∈S{xi})S⊆N see Prop. 3.3

Multilinear (∏i∈S xi)S⊆N see Prop. 3.4

Table 4.1: Examples of mapping functions and their corresponding kernels.

Remark 4.3 (universal kernel). The Gaussian kernel is a universal kernel, i.e., if κ is the
Gaussian kernel, a function of the form g(x) = ∑t

ℓ=1 αℓκ(xℓ, x) can approximate arbitrary
well any continuous real-valued function f defined over a compact (closed and bounded)
subset of X , provided that the number of training examples t is sufficiently high [Micchelli
et al., 2006].

The kernel perspective Until here, we considered the kernel attached to a predefined
mapping function ϕ. However, the starting point may be the kernel directly, meaning
that we could only define a way of measuring similarities between points in X , compute
the associated kernel matrix K for the training data at hand, and solve Problem 4.14.
This reveals one strength of kernel-based algorithms, as the input data could be of any
nature (text, graph,...), as long as we can define similarities between inputs.
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This perspective requires defining kernel functions, without considering mapping
functions:

Definition 4.5. A function κ : X × X → R is a kernel if it is symmetric and positive
definite, i.e.,:

- for any x, x′ ∈ X , κ(x, x′) = κ(x′, x)

- for any α1, . . . , αt ∈ Rt, (x1, . . . , xt) ∈ X t, ∑t
ℓ,ℓ′=1 αℓαℓ′κ(xℓ, xℓ′) ≥ 0

Remark that for any mapping function ϕ : X → H, function κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H
satisfies the conditions of Definition 4.5. Conversely, any kernel function corresponds to
an implicit mapping function, as stated by the following theorem:

Theorem 4.3. [Aronszajn, 1950] If κ : X × X → R is a kernel, there exists a Hilbert
space H and a mapping function ϕ : X → H such that κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H.

The proof requires constructing from κ, an admissible mapping function ϕ and
feature spaceH. For this, we can exploit a specific class of Hilbert space called reproducing
kernel Hilbert space (RKHS), which we define below:

Definition 4.6. A reproducing kernel Hilbert space (RKHS) is an Hilbert space of func-
tions f : X → R, for which there exists a kernel κ such that:

- for any x ∈ X , κ(x, .) ∈ H

- for any f ∈ H, x ∈ X , ⟨f, κ(x, .)⟩H = f(x) (reproducing property)

Let κ be a kernel function. Let us now consider the associated vector space H of
functions f : X → R defined by H = {∑m

i=1 αiκ(xℓ, .)| (α1, . . . , αm) ∈ Rm, (x1, . . . , xm) ∈
Xm,m ∈ N}. This vector space can be endowed with the inner product defined for any
pairs of functions f = ∑m

i=1 αiκ(xi, .) and g = ∑n
j=1 βjκ(xj, .), by ⟨f, g⟩H = ∑m

i=1
∑n
j=1 αi

βjκ(xi, xj), thus forming a Hilbert space 2. Then we have that, for any f ∈ H and any
x ∈ X , k(x, .) ∈ H and that the reproducing property holds since we have:

⟨f, κ(x, .)⟩H = ⟨
m∑
i=1

αiκ(xi, .), κ(x, .)⟩H

=
m∑
i=1

αiκ(xi, x) = f(x)

2it can easily be checked that ⟨., .⟩H satisfies the definition of an inner product and that H is complete
if it includes infinite sums

∑∞
i=1 αiκ(xi, .) [Schölkopf, 2002].
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Therefore H corresponds to the RKHS of κ. Note that while several mapping
functions ϕ and feature spacesH, can be associated to a kernel κ (i.e., such that κ(x, x′) =
⟨ϕ(x), ϕ(x′)⟩H), there is a one-to-one correspondance between a kernel and its RKHS
[Schölkopf, 2002].

Finally, by taking the mapping function ϕ(x) = κ(x, .) and the feature space H
as the RKHS of κ, by definition of the inner product ⟨., .⟩H, we have that k(x, x′) =
⟨ϕ(x), ϕ(x′)⟩H, and thus we found a mapping function associated with κ. Remark that
this amounts to assigning to each point x ∈ X , a function giving its similarity w.r.t. all
other points x′ ∈ X . For instance, with the Gaussian kernel we have for any σ > 0,
ϕ(x) = k(x, .) = e− ∥x−.∥2

2σ2 .

Remark 4.4 (Mercer’s theorem). Note that a result similar to Theorem 4.3 is given by
Mercer’s theorem [Mercer, 1909], the proof of which uses a different feature space H than
the RKHS of κ and different mapping functions.

Then, solving Problem 4.14 with some kernel κ, amounts to solving Problem 4.12
with H as the RKHS of κ, ϕ as the mapping function : x → κ(x, .) and the regression
function f(x) = ⟨w, ϕ(x)⟩H + b. Remark that by the reproducing property (see Definition
4.6), for any x ∈ X , and w ∈ H, ⟨w, ϕ(x)⟩H = w(x) and therefore, the learning problem
can be formulated as follows:

min
w∈H(κ),b∈R

t∑
ℓ=1

l(w(xℓ) + b, yℓ) + ∥w∥2
H(κ) (4.15)

where H(κ) denotes the RKHS of κ from now on. Also, it is important to note that
the functions w ∈ H(κ) inherit most of the kernel properties such as continuity and
differentiability properties [Steinwart, 2008]. In particular any function in the RKHS of
the Gaussian kernel is infinitely differentiable (see exercice 4.7 in [Steinwart, 2008]).

By varying the loss function in Problem 4.14 (or equivalently in Problem 4.15),
we can recover a wide range of well-known kernel-based algorithms. It is worth noting
that when the loss is convex, the problem is a convex optimization problem. An em-
blematic example is the support vector regression [Smola and Schölkopf, 2004] using the
ϵ-insensitive loss (introduced in the next Subsection) and its binary classification coun-
terpart support vector machines (see Subsection 2.2.2 of Chapter 3) using the hinge loss
(i.e., l(f(x), ŷ) = max{0, 1− f(x)y}, y ∈ {−1, 1}). We can also mention kernel ridge re-
gression using the squared loss (i.e., l(y, ŷ) = 1

2(y − ŷ)2), kernel logistic regression, using
the log-likelihood (classification setting) [Schölkopf, 2002] or even the kernel canonical
correlation analysis using the correlation between two sets of variables [Akaho, 2006]. In
the following, we explicit the support vector regression learning problem, as it serves as
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the basis of our learning algorithm.

2.1.2 Support Vector Regression

The support vector regression (SVR) is an instance of Problem 4.14 with the ϵ-
insensitive loss, defined for any ϵ > 0 as follows for any y, ŷ ∈ R:

lϵ(y, ŷ) =

0 if |y − ŷ| ≤ ϵ

|y − ŷ| − ϵ otherwise
(4.16)

The ϵ-insensitive loss is a convex loss that only penalizes errors that exceed a
tolerance threshold ϵ, using the absolute deviation. Remark that for ϵ = 0, we recover
the absolute loss (i.e., l(y, ŷ) =|y−ŷ|). This loss can be linearized using auxiliary variables
ϵ+
ℓ , ϵ

−
ℓ ≥ 0 modeling respectively the positive and negative part of the loss suffered on the

ℓth example (see Remark 2.2 for details on linearization of absolute values). This yields
the following optimization problem:

min
α∈Rt, ϵ+,ϵ−∈Rt

+,b∈R
C

t∑
i=1

(ϵ+
ℓ + ϵ−

ℓ ) + 1
2α

⊤Kα (4.17)

yℓ − (Kα)ℓ − b ≤ ϵ+ ϵ+
ℓ , ℓ = 1, . . . , t

(Kα)ℓ + b− yℓ ≤ ϵ+ ϵ−
ℓ , ℓ = 1, . . . , t

where ϵ+, ϵ− respectively denote the vector of slack variables (ϵ+
1 , . . . , ϵ

+
t ) and (ϵ−

1 , . . . , ϵ
−
t ).

Problem 4.17 is a convex quadratic optimization problem with linear constraints,
and thus using Remark 3.2 (Chapter 3), it can be equivalently solved in its Lagrangian
dual formulation, which admits a more compact formulation as shown hereafter. Let Y
denotes the vector of output values (y1, . . . , yt), then the Lagrangian function of Problem
4.17 can be derived by introducing Lagrange multipliers µ+, µ−, β+, β− ∈ Rt

+ respectively
attached to the example and sign constraints:

L =C1⊤(ϵ+ + ϵ−) + 1
2α

⊤Kα− (ϵ+)⊤β+ − (ϵ−)⊤β− +
(
Y −Kα− b1− ϵ1− ϵ+

)⊤
µ+

+
(
Kα+ b1− Y − ϵ1− ϵ−

)⊤
µ−

where 1 denotes the vector of size t whose components are all equal to one. Then, the
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stationarity KKT condition (see Theorem 3.2) gives:

∇αL = Kα−K(µ+ − µ−) = 0 (4.18)
∇bL = −1⊤(µ+ − µ−) = 0 (4.19)
∇ϵ+L = C1− µ+ − β+ = 0,∇ϵ−L = C1− µ− − β− = 0 (4.20)

A solution of Equation 4.18 is α = µ+ − µ−. Finally, substituting these equations
back into the Lagrangian gives the following dual problem:

max
µ+,µ−∈[0,C]t

− (µ+ − µ−)⊤K(µ+ − µ−) + Y ⊤(µ+ − µ−)− ϵ1⊤(µ+ + µ−) (4.21)

1⊤(µ+ − µ−) = 0

If µ+, µ− are optimal solutions of Problem 4.21, using α = µ+ − µ−, we obtain the
following learned regression function:

f(x) =
t∑

ℓ=1
(µ+

ℓ − µ−
ℓ )κ(xℓ, x) + b (4.22)

where b can be recovered by accessing the dual optimal variables of the unique constraint
of Problem 4.21

Remark 4.5 (kernel trick). Problem 4.21 can be equivalently recovered from the initial
learning problem (see Problem 4.12) without resorting to the representer theorem (see
Theorem 4.2), but simply by applying Lagragian duality. More precisely, let ϕ be any
mapping function valued in H = Rd, then Problem 4.12 for the ϵ-insensitive loss is the
following problem (after linearization):

min
w,ϵ+∈Rt

+,ϵ
−∈Rt

+

C
t∑

ℓ=1
(ϵ+
ℓ + ϵ−

ℓ ) + 1
2∥w∥

2
2

yℓ − w⊤ϕ(xℓ)− b ≤ ϵ+ ϵ+
ℓ , ℓ = 1, . . . , t

w⊤ϕ(xℓ) + b− yℓ ≤ ϵ+ ϵ−
ℓ , ℓ = 1, . . . , t

Then, if µ+, µ− denote the dual variables of the constraints in the problem given
above, it can easily be checked that its dual coincides with Problem 4.21, where K is the
matrix such that Kℓ,ℓ′ = ϕ(xℓ)⊤ϕ(xℓ′). The fact that Problem 4.21 only depends on these
inner products supports the idea that one could consider the kernel matrix associated
with any kernel function κ(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H, even if H has infinite dimension. This
observation is known as the kernel trick [Schölkopf, 2002] and is also frequently used to
approach kernel-based methods independently of the representer theorem, as was done
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in Subsection 2.2.2 of Chapter 3 for support vector machines.

Problem 4.21 is a convex quadratic program that can be solved using standard
numerical solvers implementing interior-point methods (see Subsection 3.1.4 of Chapter
1). Furthermore, efficient iterative procedures that take advantage of the specific struc-
ture of the optimization problem have been proposed. A major example is the sequential
minimal optimization (SMO) algorithm and its variants [Platt, 1998, Fan et al., 2005]
that is efficiently implemented in the library LIBSVM [Chang and Lin, 2011].

In the following, we return to Problem 4.14 for an arbitrary loss function, and
introduce its extension to multiple kernel learning.

2.1.3 Multiple Kernel Learning

The core idea of Multiple Kernel Learning (MKL) [Lanckriet et al., 2004a, Bach
et al., 2004] is to use a basis of kernels {κl}pl=1 and a non-negative weight vector d =
(d1, . . . , dp) to replace κ with a linear combination of kernels κd = ∑p

l=1 dlκl. Note that
κd is still a kernel as the non-negativity of the weights preserves the positive semi-definite
property (see Definition 4.5). Also, in the following, the kernel matrix associated with
κd is denoted by Kd, and we have Kd = ∑p

l=1 dlKl where Kl denotes the kernel matrix
associated with κl.

MKL may be used to achieve two different types of objectives [Gönen and Alpaydın,
2011]:

(1) to combine the different similarity measures induced by the different kernels to
uncover sophisticated data patterns and/or to automatically select the kernels that
work best on the training data by learning a sparse weight vector d, thus avoiding
the bias that would come from pre-selecting a specific kernel. For instance, it is
used in computer vision [Varma and Ray, 2007, Bucak et al., 2013, Gu et al., 2017]
where different kernels are used to accounts for similarities related to different image
characteristics such as color, shape or texture.

(2) to combine different sources of information, when each kernel κl takes as input a
different group of variables. This is of interest for assigning different kernels to
feature groups of different nature that may require distinct similarity measures, or
for performing a selection of the important variable groups via a sparse learning of d
(with or without distinct kernels for each group). For instance, it is used in genomics
to combine data of different nature such as DNA sequences, gene expression and
protein expression [Lanckriet et al., 2004b, Yu et al., 2013, Wilson et al., 2019].

In both cases, introducing this weighted combination into a kernel-based learning
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methods requires the learning of both the model parameters α and the weight vector d.
This challenge can be handled in multiple ways (an overview of the different methods
is provided in [Gönen and Alpaydın, 2011]). Here, we focus on optimization approaches
that search for d that minimizes both the optimum value of Problem 4.14 obtained with
K = Kd, denoted by Jl,C(Kd) for a loss l : R× R→ R and a parameter C ∈ R+, and a
regularization term Ω(d), as follows:

min
d∈Rp

+

Jl,C(Kd) + λΩ(d) (4.23)

where λ ∈ R+ is an hyperparameter controlling the level of regularization on d.
Whatever it is for selecting kernels (setting (1)) or selecting feature groups (set-

ting (2)), Ω(d) is often taken as a convex sparsity-inducing regularization, such as ℓ1-
regularization either in the objective (i.e., Ω(d) = ∥d∥1) [Varma and Ray, 2007], or
in constraint (i.e., Ω(d) = 1B1(d) where B1 = {d ∈ Rp|∥d∥1 ≤ 1}) [Bach et al.,
2004, Zien and Ong, 2007, Rakotomamonjy et al., 2007, 2008], which are known to
be equivalent (see Theorem 1 in [Kloft et al., 2011]). As d is non-negative, its ℓ1-
norm reduces to ∥d∥1 = ∑

l dl, and the constrained version of the regularization often
appears as an equality, i.e., ∑l dl = 1 [Bach et al., 2004, Zien and Ong, 2007, Rako-
tomamonjy et al., 2007, 2008]. We can also mention approaches using a trace constraint
on Kd [Lanckriet et al., 2004a, Qiu and Lane, 2008], which reduces to a weighted ver-
sion of ℓ1-regularization by linearity of the trace (i.e., Ω(d) = 1Tc(d) where c > 0 and
Tc(d) = {d ∈ Rp|tr(Kd) = ∑p

l=1 dltr(Kl) ≤ c}). Finally, other approaches use egular-
izations that do not induce sparsity such as ℓ2-regularization [Cortes et al., 2009] and
more generally ℓp-regularizations [Kloft et al., 2009, 2011] (i.e., Ω(d) = ∥d∥pp, p ≥ 1; see
Definition ??), or entropy regularization (i.e., Ω(d) = ∑p

l=1 dl ln(dl) ) [Xu et al., 2010].
It is important to note that, if l and Ω are convex functions, Problem 4.23 is a

convex optimization problem. This can be proved using a reasoning similar to that of
[Bach et al., 2012] (Subsection 1.5). First, remark that for any loss l and C > 0, Jl,C(Kd)
can be reformulated as the optimum of a constrained problem:

Jl,C(Kd) = min
α,u∈Rt,b∈R

Rl,C(u, b) + 1
2

p∑
l=1

dlα
TKlα s.t. u =

p∑
l=1

dlKlα (4.24)

where Rl,C(u, b) = C
∑t
ℓ=1 l(uℓ + b, yℓ). The Lagrangian function of Problem 4.24 then

reads as L = Rl,C(u, b) + 1
2
∑p
l=1 dlα

TKlα + γ⊤(u − ∑p
l=1 dlKlα), where γ ∈ Rt are the

dual variables. Also, if l is convex, then Rl,C is convex and Problem 4.24 is a convex
optimization problem with equality constraints. Therefore, by Remark 3.2 of Chapter 3,
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strong duality holds and Problem 4.24 may be equivalently written in its dual form:

Jl,C(Kd) = max
γ∈Rt

min
α∈Rt,b∈R

Rl,C(u, b) + 1
2

p∑
l=1

dlα
TKlα + γ⊤(u−

p∑
l=1

dlKlα)

= max
γ∈Rt

( min
u∈Rt,b∈R

Rl,C(u, b) + γ⊤u) + (min
α∈Rt

1
2

p∑
l=1

dlα
TKlα− γ⊤

p∑
l=1

dlKlα)

= max
γ∈Rt

(
( min
u∈Rt,b∈R

Rl,C(u, b) + γ⊤u)− 1
2

p∑
l=1

dlγ
TKlγ

)
(4.25)

Hence, Jl,C(Kd) is the maximum of a function linear in d, and is thus convex in d.
Indeed, it can easily be checked that any pointwise maximum of a linear function, i.e.,
function of the form h(α) = maxx x⊤α is convex.

When l is the ϵ-insensitive loss or the hinge loss (i.e., Jl,C(Kd) is the optimum
of a SVR or SVM problem), Problem 4.23 often reduces to a convex quadratically con-
strained quadratic program (QCQP) (for instance see [Lanckriet et al., 2004a, Qiu and
Lane, 2008] for a trace regularization, and [Rakotomamonjy et al., 2008] for a ℓ1-norm
constraint regularization). Such optimization problem can be solved for a reasonable
number (hundreds) of examples and kernels using standard numerical solvers implement-
ing interior-point methods (see Subsection 3.1.4 of Chapter 1). To consider problems
of larger size, more efficient iterative optimization procedures have been proposed [Son-
nenburg et al., 2006, Varma and Ray, 2007, Rakotomamonjy et al., 2008, Kloft et al.,
2011].

In the following, we exploit the idea of selecting group features with MKL (setting
(2)) to learn sparse GAI-decomposition of utility functions. While kernel-based methods
have been widely used to learn utility functions from preference examples [Chapelle and
Harchaoui, 2004, Radlinski and Joachims, 2005, Waegeman et al., 2009, Lahaie, 2010,
Domshlak and Joachims, 2012, Tehrani et al., 2014b, Tehrani, 2021], to the best of our
knowledge, there is no attempt on learning GAI decompositions of these utility functions
exploiting additively decomposed kernels. For this reason, we propose in the following a
method for learning a sparse (classical or anchored) ANOVA decomposition of the utility
function using overall evaluations or preference examples.

2.2 Sparse ANOVA Learning from Regression and Preference
Examples

It is important to note that there is a large body of work on estimating, from
regression example, a functional decomposition of the form of Equation 4.7 (often re-
ferred to as high-dimensional model representations (HDMR) [Rabitz and Aliş, 1999, Li
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et al., 2001, Sobol’, 2001]). A popular method for the classical ANOVA is smoothing
splines ANOVA (SS-ANOVA) [Wahba, 1990, Wahba et al., 1995, Gu, 2002, 2014], and its
extension to learn sparse decomposition COmponent Selection and Smoothing Operator
(COSSO) [Lin and Zhang, 2006]; both of them can be considered as kernel-based learning
methods using specific losses and kernels aligned with the classical definition of ANOVA
decomposition. However, in this chapter, we take the general view of multiple kernel
learning that is a flexible framework accommodating a wide range of loss functions and
kernel decompositions, and that enables the learning of sparse decompositions via convex
optimization.

This section is organized as follows: we first discuss the choice of a kernel basis well-
suited to learn a (classical or anchored) ANOVA decomposition of the utility function
(Subsection 2.2.1). Then we explicit a QCQP formulation of Problem 4.23 with Jl,C(Kd)
as the optimum of a SVR problem and Ω(d) as an ℓ1-regularization term, to obtain sparse
decompositions of the utility functions from examples of overall evaluations of alternatives
{(xℓ, yℓ)}tℓ=1, yℓ ∈ R (Subsection 2.2.3). Finally, we extend the proposed method for
learning the utility decomposition from preference examples {xℓ, x′ℓ}tℓ=1 where xℓ ≻ x′ℓ

for any ℓ ∈ {1, . . . , t}, using a basis of preference kernel (Subsection 2.2.4).

2.2.1 All-subsets Kernel Basis

Let us consider a basis of kernel functions {κS}S⊆N where for any S ⊆ N , κS is
a kernel depending on, and only on, the attributes in S. Such a basis, referred to as
an all-subsets kernel basis in the following, can be constructed using a univariate kernel
k : X1 ×X1 → R and considering the tensor product of k, i.e., for any xS, x′

S ∈ XS:

κS(xS, x′
S) =

∏
i∈S

k(xi, x′
i) (4.26)

Note that the tensor product of kernels is a kernel, as the product of kernels is a
kernel (see Proposition 13.2 in [Schölkopf, 2002]). Then, we consider the kernel combi-
nation:

κd =
∑
S⊆N

dSκS (4.27)

where d is now indexed by S ⊆ N (in the lexicographical order). Remark that, by solving
Problem 4.14 using κd, we learn a function u ∈ H(κd) decomposed into a sum of factors:

U(x) =
t∑

ℓ=1
αℓκd(xℓ, x) + b =

∑
S⊆N

dS
t∑

ℓ=1
αℓκS(xℓS, xS) + b =

∑
S⊆N

uS(xS) + b (4.28)
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with uS(xS) = dS
∑t
ℓ=1 αℓκS(xℓS, xS) ∈ H(κS), for any S ⊆ N .

For d = (1, . . . , 1), κd = ∑
S κS(xS, x′

S) = ∑
S

∏
i∈S k(xi, x′

i) = ∏n
i=1(1 + k(xi, x′

i))
is a tensor product kernel that is well-known under the name ANOVA kernel [Vapnik,
1998, Saunders et al., 1998, Stitson et al., 1999]. However, if the name is related to the
ANOVA’s core idea of decomposing a function in terms depending on subsets of variables,
this kernel does not provide an ANOVA decomposition since nothing guarantees that∫
Xi
uS(xS−i

, xi)dxi = 0 or uS(xS−i
, 0i) = 0 , ∀xS−i

∈ XS−i
, for any S ⊆ N and i ∈ S, which

are the respective conditions defining the classical and anchored ANOVA decompositions
(see resp. Definition 4.3 for the classical and Subsection 1.2.2 for the anchored version).
Also, the ANOVA kernel uses all the possible subsets of N (or all until a given size p)
and as it is, does not allow to perform a selection of the most important subsets.

In the following subsection, exploiting Theorem 4.1, we explicit a condition on the
univariate kernel κ so that the decomposition {uS}S⊆N given by Equation 4.28 coincides
with the (classical or anchored) ANOVA decomposition of the learned function U . Then
in Subsection 2.2.3, we address the challenge of learning a sparse decomposition using
MKL, and in particular by formulating the learning problem as an instance of Problem
4.23 with ℓ1-regularization.

2.2.2 Retrieving an ANOVA Decomposition

Let us consider one of the two following conditions on the univariate kernel k:
∫
X1
k(x, x′)dx′ = 0, for any x ∈ X1 (4.29)

k(x, 0) = 0, for any x ∈ X1 (4.30)

Then, we have the following implications:

(4.29)⇒
∫
Xi

uS(xS−i
, xi)dxi = dS

t∑
ℓ=1

αℓ
∏
j ̸=i

k(xℓj, xj)
∫
Xi

k(xℓi , xi)dxi = 0,∀S, i ∈ S, xS−i
∈ XS−i

(4.30)⇒ uS(xS−i
, 0i) = dS

t∑
ℓ=1

αℓ
∏
j ̸=i

k(xℓj, xj)k(xℓi , 0) = 0, ∀S, i ∈ S, xS−i
∈ XS−i

Therefore, if k satisfies Condition 4.29 (resp. Condition 4.30), the decomposition
{uS}S⊆N coincides with the classical (resp. anchored) ANOVA decomposition of the
learned function U . Some standard univariate kernel verify Condition 4.29 or 4.30 by
definition. For Condition 4.29, a well-known example is the Sobolev kernel of order r
used in SS-ANOVA [Wahba, 1990, Gu, 2013], constructed with Bernouilli polynomials as
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follows:

k(x, x′) = B2r(|x− x′|)
(−1)r+1(2r)! +

r∑
i=1

Bi(x)Bi(x′)
(i!)2 . (4.31)

where for any r ∈ N, Br is the Bernouilli polynomial of degree r, which satisfies
∫ 1

0 Br(x)dx =
0 (see [Abramowitz and Stegun, 1968] Chapter 23). However, one may be interested in
identifying the function U in other RKHS, associated with different regularity properties
and approximation capabilities. This can be done by constructing an univariate kernel
k0(x, x′) from any univariate kernel k, the integral of which (w.r.t x or x′) equals zero, as
proposed in [Durrande et al., 2013]:

k0(x, x′) = k(x, x′)−
∫
s k(s, x′)ds

∫
t k(x, t)dt∫

s

∫
t k(s, t)dsdt (4.32)

Under mild hypothesis on kernel k, it can be shown that the attached k0 is still a
kernel [Durrande et al., 2013], and it is straightforward to see that k0 satisfies Condition
4.29 by construction. Note that k is required to verify

∫
k(s, x)ds < ∞ for any x ∈ X

and
∫ ∫

k(s, t)dsdt <∞ so that k0 is well defined.
Below, we also give examples of standard kernels of varying flexibility verifying

Condition 4.30:

- k(x, x′) = xx′ (linear univariate kernel) (4.33)
- k(x, x′) = (xx′)d (polynomial univariate kernel of degree d ∈ N with c = 0) (4.34)
- k(x, x′) = min(x, x′) (brownian kernel [Karatzas and Shreve, 1991]) (4.35)

- k(x, x′) = xx′ + (x+ x′) min(x, x′)
2 −

(
min(x, x′)

)3

6 (first order infinite spline kernel

[Vapnik et al., 1996]) (4.36)

In the following, the univariate kernel k is assumed to satisfy either Condition
4.29 or Condition 4.30, depending on whether a classical ANOVA decomposition or an
anchored decomposition is desired.

2.2.3 Sparse ANOVA Decomposition

In order to select the most useful coalitions and provide simple ANOVA decompo-
sitions, we need to learn a sparse representation of the weight vector d. To this end, we
combine the SVR algorithm with ℓ1-regularization to obtain sparsity in d, as it is done in
[Gunn and Kandola, 2002] with SVR and ridge regression and in [Varma and Ray, 2007]
with SVM. This amounts solving the MKL problem (see Problem 4.23) with Jl,C(Kd)
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as the optimum value of the SVR Problem (see Problem 4.21 in the dual or 4.17 in the
primal) and Ω(d) = ∥d∥1.

Note that [Gunn and Kandola, 2002] also considers an all-subset kernel basis to
learn ANOVA decompositions, making their initial problem equivalent to ours. In par-
ticular, the univariate kernel k is set to the first order infinite spline kernel (see Equation
4.36), which allows for uncovering anchored ANOVA decompositions. However, the pos-
sibility of learning different types of ANOVA decompositions (classical or anchored) is
not discussed and the optimization task is tackled using alternative minimization w.r.t.
α and d, whereas we show in the following that the learning problem can be formulated
as a compact QCQP, which, as we show in Section 3, can be solved in reasonable time
using standard numerical solvers up to a dozen attributes.

Finally, [Durrande, 2011] (Chapter 5) also proposes to learn sparse classical ANOVA
decompositions using MKL. However, they exploit the hierarchical multiple kernel ap-
proach [Bach, 2008], that consists in using a group ℓ1-regularization that would automat-
ically include a factor uS with its sub factors uS′ , S ′ ⊆ S. Such mechanism allows obtain-
ing efficient optimization algorithms with polynomial time complexity in the number of
selected kernels [Bach, 2008], however, may not always be desirable. For instance, coming
back to the function U(x1, x2, x3, x4) = (x1−x2)2 +2x1(x2 +x3)+x4 = x2

1 +x2
2−x1x3 +x4

used in Example 4.1, 4.3 and 4.5, the anchored ANOVA decomposition (see Example 4.5)
is given by:

u1(x1) = x2
1, u2(x2) = x2

2, u4(x4) = x4, u13(x1, x3) = x1x3

all the other factors being null. Therefore, the factor u13 is included, while its sub-factor
u3 is not. Therefore, such a decomposition could not be recovered with hierarchical
regularization.

Learning Problem and QCQP Dual Formulation Let us consider a set of regression
examples {(xℓ, yℓ)}tℓ=1 and denote by KS, S ⊆ N the kernel matrices associated with the
basis {κS}S⊆N . We solve an instance of Problem 4.23 with Kd = ∑

S⊆N dSKS, Jl,C(Kd)
as the optimum value of the SVR Problem and ℓ1-regularization. Integrating the SVR
problem using its dual formulation (see Problem 4.21), and recalling that since the weights
dS are positive, the ℓ1-penalty is simply the sum of the weights, we have the following
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optimization problem:

min
d∈R2n−1

+

max
µ+,µ−∈[0,C]t

1⊤(µ+−µ−)=0

(
−
∑
S⊆N

dS(µ+ − µ−)⊤KS(µ+ − µ−) + Y ⊤(µ+ − µ−)− ϵ1⊤(µ+ + µ−)
)

+ λ
∑
S⊆N

dS (4.37)

which can be reformulated as:

min
d∈R2n−1

+

max
µ+,µ−∈[0,C]t

1⊤(µ+−µ−)=0

( ∑
S⊆N

dS
(
λ− (µ+ − µ−)⊤KS(µ+ − µ−)

)
+ Y ⊤(µ+ − µ−)− ϵ1⊤(µ+ + µ−)

)

Therefore, Problem 4.37 corresponds to the Lagrangian dual of the following opti-
mization problem, where only the quadratic constraints have been dualized and dS are
their corresponding dual variables:

max
µ+,µ−∈[0,C]t

Y ⊤(µ+ − µ−)− ϵ1⊤(µ+ + µ−) (4.38)

λ− 1
2(µ+ − µ−)⊤KS(µ+ − µ−) ≥ 0, S ⊆ N

(µ+ − µ−)⊤1 = 0

Remark 4.6. Lagrangian duality applies to maximization problem by remarking that
maxg(x)≤0 F (x) ⇐⇒ −mingi(x)≤0,i=1,...,m−F (x). Then by using the definition of the
Lagrangian dual of a minimization problem (see Subsection 2.2.1 of Chapter 3), we have
that its dual is mind∈Rm

+
maxx F (x)−∑m

i=1 digi(x).

As Problem 4.38 is a convex problem where the quadratic constraints admit the
strictly feasible point µ+ = µ− = C

2 1 for any λ > 0, it satisfies Slater’s condition (see
Remark 3.2 of Chapter 3) and strong duality holds. Therefore Problem 4.38 and 4.37
are equivalent. Problem 4.38 is a quadratically constrained program involving 2t vari-
ables and 2n constraints (where t is the number of examples and n is the number of
attributes). We will show in Section 3 that it can be solved in reasonable times up to
a dozen of attributes and hundreds of examples using standard numerical solvers imple-
menting interior-point methods (see Subsection 3.1.4 of Chapter 1). Note that similar
dual formulations of Problem 4.23 with Jl,C(Kd) corresponding to a SVR or SVM op-
timum can be found in the literature. However, their formulations differ slightly due to
variations in the choice of regularization [Lanckriet et al., 2004a, Qiu and Lane, 2008,
Rakotomamonjy et al., 2007, 2008].

If µ+, µ− are solutions of Problem 4.38, then similarly to the SVR (see Subsection
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2.1.2), α = µ+−µ−, and b can be recovered by accessing the dual variable of the equality
constraint. Then, the learned function reads as:

U(x) =
t∑

ℓ=1
αℓκd(xℓ, x) + b =

∑
S⊆N

dS
t∑

ℓ=1
(µ+ − µ−)ℓκS(xℓS, xS) + b =

∑
S⊆N

dSũS(xS) + b

where ũS(xS) = ∑t
ℓ=1(µ+ − µ−)ℓκS(xℓS, xS). It is interesting to note that, by the comple-

mentary slackness KKT condition (see Theorem 3.2), we have that dS
(
(µ+−µ−)⊤KS(µ+−

µ−) − λ
)

= 0 for any S ⊆ N , and therefore as soon as (µ+ − µ−)⊤KS(µ+ − µ−) ⇔
∥ũS∥2

H(κS) < λ, we have dS = 0. As the presence of a sub-utility uS in the decomposition
of the utility function U is equivalent to a non-null weight dS, we thus recover simpler
decompositions by increasing the ℓ1-penalty hyper-parameter λ in Problem 4.38.

In the following, we extend the proposed method to cope with learning examples
under the form of pairwise comparisons.

2.2.4 Learning from Pairwise Preference Examples

In this section, we learn a utility function from pairwise comparison examples of
the form {(xℓ, x′ℓ)}tℓ=1 where xℓ ≻ x′ℓ for any ℓ ∈ {1, . . . , t}, and seek the utility function
that best captures the decision maker’s preference ranking .

Preference Kernel Similarly to the kernel-based regression setting, the utility function
is modeled as U(x) = ⟨w, ϕ(x)⟩H, whereH is a Hilbert space and ϕ : X → H is a mapping
function that may include non-linearities. Note that the intercept term is omitted in this
context, as it is not necessary for explaining preference examples.

Preference example violations can be penalized using the convex pref-hinge loss
l(U(x), U(x′)) = max{0, δ − (U(x′) − U(x))} (see Definition 1.28) where δ ≥ 0 is a
tolerance threshold. As this loss only depends on the utility difference U(x′) − U(x) =
⟨w, ϕ(x)− ϕ(x′)⟩H , the learning problem can be formulated as follows:

min
w∈H

C
t∑

ℓ=1
g(⟨w, ϕ̃(xℓ, x′ℓ)⟩H) + 1

2∥w∥
2
H (4.39)

where g(s) = max{0, δ − s} for any s ∈ R and ϕ̃ : X × X → H is the mapping function
such that ϕ̃(x, x′) = ϕ(x) − ϕ(x′). The proof of the representer theorem (see Theorem
4.2) can be easily adapted to Problem 4.39 and we obtain that for any solution w, there
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exists α ∈ Rt such that w = ∑t
ℓ=1 αℓϕ̃(xℓ, x′ℓ). Then, the learned function is:

U(x) = ⟨w, ϕ(x)⟩H = ⟨
t∑

ℓ=1
αlϕ̃(xℓ, x′ℓ), ϕ(x)⟩H

=
t∑

ℓ=1
αl(⟨ϕ(xℓ), ϕ(x)⟩H − ⟨ϕ(x′ℓ), ϕ(x)⟩H) =

t∑
ℓ=1

αl(k(xℓ, x)− k(x′ℓ, x)) (4.40)

where κ is the kernel function associated with ϕ. Intuitively, the utility of an alternative
x ∈ X is determined by its similarity (in the sense of κ) to the preferred alternatives (i.e.,
{xℓ}tℓ=1) and its dissimilarity to the non-preferred ones (i.e., {x′ℓ}tℓ=1).

Let us now denote κ̃ the kernel function associated with ϕ̃, which coincides with
the preference kernel introduced in Subsection ? of Chapter 3, defined as follows:

κ̃((x, x′), (z, z′)) = ⟨ϕ̃(x, x′), ϕ̃(z, z′)⟩H
= ⟨ϕ(x), ϕ(z)⟩H + ⟨ϕ(x′), ϕ(z′)⟩H − ⟨ϕ(x), ϕ(z′)⟩H − ⟨ϕ(x′), ϕ(z)⟩H
= κ(x, z) + κ(x′, z′)− κ(x′, z)− κ(z′, x) (4.41)

Finally, let K̃ denotes the kernel matrix associated with κ̃, i.e., for any ℓ, ℓ′ ∈
{1, . . . , t}, K̃ℓℓ′ = κ̃((xℓ, x′ℓ), (xℓ′ , x′ℓ′)). Then, similarly to the regression setting, Problem
4.39 reformulates as an optimization problem with a finite number of variables:

min
α∈Rt

C
t∑

ℓ=1
g((K̃α)ℓ) + 1

2α
T K̃α (4.42)

Similarly to the SVR Problem (see Subsection 2.1.2), Problem 4.42 can be linearized
by introducing positive slack variables ϵ+

ℓ modeling the error suffered on the ℓth example.
This gives the following learning problem:

min
α∈Rt, ϵ+∈Rt

+

C
t∑

ℓ=1
ϵ+
ℓ + 1

2α
⊤K̃α (4.43)

(K̃α)ℓ ≤ δ + ϵ+
ℓ , ℓ = 1, . . . , t

Remark 4.7 (ranking SVM). It is worth mentioning that Problem 4.43 corresponds to a
support vector machine (SVM) problem (see Subsection 2.2.2 of Chapter 3) with kernel K̃,
margin δ, no intercept, and only positive examples. Such a problem can be encountered
in the literature under the name of ranking SVM [Herbrich et al., 2000, Radlinski and
Joachims, 2005, Evgeniou et al., 2005, Chen et al., 2009].

Finally, similarly to the SVM/SVR problem, Problem 4.43 can be equivalently
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solved in its dual formulation, which reduces to the following problem:

max
µ∈[0,C]t

− µ⊤K̃µ+ δ1⊤µ (4.44)

where it can easily be checked the stationnarity KKT conditions yield α = µ.

Sparse ANOVA Decomposition with Mutiple Kernel Learning As in the regres-
sion setting, we can learn a decomposition of U in a sum of factors by replacing κ with
a decomposed kernel κd given by Equation 4.27, yielding the following utility model:

U(x) =
∑
S⊆N

dS
t∑

ℓ=1
αℓ(κS(xℓS, xS)− κS(x′ℓ

S , xS)) (4.45)

It is straightforward to see that if the univariate kernel k used to construct the ker-
nels κS, S ⊆ N satisfies Condition 4.29 (resp. Condition 4.30), we have

∫
Xi
uS(xS−i

, xi)dxi =
0, ∀S, i ∈ S, xS−i

∈ XS−i
(resp. uS(xS−i

, 0i) = 0, ∀S, i ∈ S, xS−i
∈ XS−i

) and thus,
the decomposition given by Equation 4.45 coincides with the classical (resp. anchored)
ANOVA decomposition of U .

Let us now denote K̃d and K̃S, S ⊆ N the kernel matrices associated with the
kernels κ̃d and κ̃S, respectively corresponding to the preference version of κd and κS,
as defined by Equation 4.41. Naturally, we have K̃d = ∑

S⊆N dSK̃S. Then, a sparse
(classical or anchored) ANOVA decomposition can be learned with MKL by solving an
instance of Problem 4.23 where Jl,C(K̃d) is the optimum value of Problem 4.44 with
K̃ = K̃d and Ω(d) is an ℓ1-regularization term, i.e.,:

min
d∈R2n−1

+

max
µ∈[0,C]t

(
−
∑
S⊆N

dSµ
⊤K̃Sµ+ δ1⊤µ

)
+ λ

∑
S⊆N

dS (4.46)

Problem 4.46 coincides with the dual of the following quadratically constrained
convex optimization problem:

max
µ∈[0,C]t

δ1⊤µ (4.47)

λ− 1
2µ

⊤K̃Sµ ≥ 0, S ⊆ N

which satisfies Slater’s conditions and thus is equivalent to Problem 4.46. Therefore, the
MKL learning task can be solved with Problem 4.47, where the optimal weights dS, S ⊆ N

are recovered by assessing the dual optimal variables of the quadratic constraints.
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3 Numerical Tests

This section presents the results of numerical tests performed on synthetic and
real-world preference data. We implement our method, called SMKGAI for Sparse Mul-
tiple Kernel GAI, with the univariate first order infinite spline kernel (see Equation
4.36) to learn anchored ANOVA decompositions, and the univariate Gaussian kernel,
i.e., k(x, x′) = exp (− (x−x′)2

2σ2 ) (with σ = 1) transformed according to Equation 4.32, to
learn classical ANOVA decompositions. Note that in practice, the integrals involved in
Equation 4.32 have to be approximated with numerical integration. To avoid unnecessary
repeated computations, we use a discretized representation of function x 7→

∫
k(s, x)ds

that has been computed beforehand.
The tests are conducted in the regression setting, by solving Problem 4.38 with

the tolerance threshold ϵ set to 0.01 and the regularization hyper-parameters C and λ

selected by cross-validation using a number of folds equal to 3. All tests are conducted
on a 2.8 GHz Intel Core i7 processor with 16GB RAM and we used the mathematical
programming Gurobi solver (version 9.1.2).

3.1 Synthetic Data

We first show the result of the learning on synthetic data generated with a 6-
dimensional utility function involving two irrelevant variables, i.e., U(x1, x2, x3, x4, x5, x6) =
x2

1 + x2
4 + 2x3x4. We generate a regression training set of size t = 70 from the hidden

utility function U , with a random uniform draw of alternatives xℓ in [0, 1]n. The data is
then perturbated with a centered Gaussian noise with standard error σ = 0.05. Then,
an anchored ANOVA decomposition is learned using the first-order infinite spline kernel,
and its significant factors are represented in red in Figure 4.1, alongside the true anchored
ANOVA decomposition of U shown in black.

Secondly, we conduct an experiment using a model with a high degree of interaction:
U(x) = ∑n

i=1 xi + 1000∏n
i=1 xi for n = 6. In order to assess the benefit of allowing high

interactions in the learning of a GAI decomposition, we compare SMKGAI with p-additive
GAI utilities that do not use ℓ1-regularization to select the most useful factors but that
include factors of size at most p for p ∈ {1, 2, 3, 4}. The case p = 1 corresponds to
the learning of an additive utility. This is done using the SVR algorithm, i.e., by solving
Problem 4.21 using the ANOVA kernel of degree p: κ = ∑

S⊆N,|S|≤p κS. The experiment is
conducted to learn both anchored and classical ANOVA decompositions of U . For this, we
generate, from the hidden utility function U , random regression training sets of size t = 70
with a random uniform draw of alternatives xℓ in [0, 1]n for the anchored and [−0.5, 0.5]n

for the classical ANOVA decomposition (so that both ground truth decompositions of U
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Figure 4.1: Learned and ground truth utility factors u1(top left), u2 (top right), u34
(bottom).

are ui(xi) = xi and uN(x) = 1000∏n
i=1 xi). The data is then perturbated with a centered

Gaussian noise with standard error corresponding to 2% of the standard deviation of
U(x).

In Table 4.2, we compare the generalizing performances of SMKGAI and the one
obtained with dense p-additive GAI models (p-GAI) over 20 simulations performed with
the first order infinite spline kernel (yielding anchored ANOVA decompositions). The
generalized performances are measured as the relative mean absolute errors (MAE (%)),
i.e., the average relative differences between the ground truth utility and the predicted
utility over test sets of size 150. We also provide the computing times (sec.) for all the
methods, along with the degree of interaction of the learned function, i.e., the size of
the largest included coalition (max size), and the number of factors. We observe that
SMKGAI, by capturing the interaction of size n, divides by 3 the MAE (%) compared to
the 1-additive models, and by 2 compared to the 4-additive model, with a computation
time lower than 10 seconds in average. Similar results are obtained in Table 4.3 for
the learning of classical ANOVA decompositions with the Gaussian kernel transformed
according to Equation 4.32.

Finally, we perform an experiment on synthetic data generated with more general
models for n = 10. The models are randomly generated as sums of 10 tensor products of
quadratic splines. In order to increase the complexity of the hidden models, the maximal
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MAE (%) Time (sec.) Max Size Number of Factors

SMKGAI 33.38 ± 11.21 9.66± 0.99 6.00± 0.00 6.00± 2.45
1-GAI 104.95± 36.29 1.62 ± 0.22 1.00± 0.00 6.00± 0.00
2-GAI 73.60± 9.59 2.25± 0.28 2.00± 0.00 21.00± 0.00
3-GAI 70.73± 14.49 2.95± 0.43 3.00± 0.00 41.00± 0.00
4-GAI 67.75± 14.97 3.59± 0.45 4.00± 0.00 56.00± 0.00

Table 4.2: Comparison of SMKGAI and p-GAI (anchored ANOVA).

MAE (%) Time (sec.) Max Size Number of Factors

SMKGAI 31.61 ± 28.02 8.80± 0.64 6.00± 0.00 7.05± 0.22
1-GAI 152.70± 148.35 1.61 ± 0.19 1.00± 0.00 6.00± 0.00
2-GAI 177.15± 181.71 2.22± 0.29 2.00± 0.00 21.00± 0.00
3-GAI 159.47± 133.52 2.99± 0.37 3.00± 0.00 41.00± 0.00
4-GAI 160.80± 136.76 3.53± 0.36 4.00± 0.00 56.00± 0.00

Table 4.3: Comparison of SMKGAI and p-GAI (classical ANOVA).

size of the factors (max. size) is increased from 1 (additive utility) to 5. We perform
20 simulations and each time, we generate a set of regression examples of size t = 140
perturbated with a Gaussian centered noise of standard error σ = 0.05. In Table 4.4
is represented the MAE (%) on test sets of size 150 along with the maximal size of the
learned factors and the False Discovery Rate (FDR), which is computed as the percentage
of selected factors in the learned ANOVA decomposition that are not included in any of
the factors of the hidden function. We consider that a factor S ⊆ N is selected as soon as
the attached weight dS is higher than 0.01. As expected, we observe that the MAE (%)
increases as the interaction degree (max size) of the hidden model increases. However,
our learning approach is able to capture these interactions since the maximal size of the
learned factors increases similarly to the ground truth, with a percentage of false inclusion
(FDR) in the model that stays below 20%.

3.2 Real-world Datasets

In this Subsection, we test our method on real preference datasets. We use stan-
dard multi-criteria decision-making benchmarks containing overall evaluations of alter-
natives described by continuous or discrete attributes. We use Employee Selection (ESL)
which contains profiles and overall psychological evaluations of job candidates, Lecture
Evaluation (LEV), containing examples of anonymous lecturer evaluations and Employee
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Max size MAE (%) Max size FDR
(true)

1 0.026± 0.012 1.0± 0.0 0.0± 0.0
2 0.036± 0.012 2.0± 0.4 0.011± 0.033
3 0.067± 0.013 3.0± 1.4 0.078± 0.115
4 0.085± 0.020 4.1± 1.0 0.198± 0.165
5 0.082± 0.015 4.2± 1.2 0.156± 0.124

Table 4.4: Model recovery assessment for growing interaction degree of the hidden models
in average over 20 simulations.

Rejection/Acceptance (ERA)3, which contains the judgment of a decision-maker w.r.t
candidate profiles. Then from the UCI repository, we use CPU and Car MPG (MPG)
which respectively contain the performances of CPU and the fuel consumption of cars,
along with attributes describing the objects. Finally, we use the Movehub city rank-
ing4 (CITY) dataset which contains overall evaluations of cities quality. The number of
evaluations t and the number of attributes n of each dataset is given in Table 4.5.

Dataset ESL LEU ERA CPU MPG CITY
n 4 4 4 6 7 5
t 488 1000 1000 209 392 216

Table 4.5: Datasets’ number of attributes n and examples t.

We compare SMKGAI to standard baselines from preference modeling such as the
linear regression (LR), the 2-additive Choquet Integral (2-add CI) (see Definition 1.9
and 1.10), and p-additive GAI (p-GAI) for p = 1 and p = 2. The attribute values are
normalized using a linear max-min normalization. Each dataset is split to produce a
training set containing 80% of the examples and a test set with the 20% left. For 20
random splits, we compute the MAE (%) obtained on the test set for each method and
present the averaged results in Table 4.6 for SMKGAI and p-GAI with the Gaussian
kernel (yielding classical ANOVA decompositions) and in Table 4.7 for the first order
infinite spline kernel (yielding anchored ANOVA decompositions). For each dataset, the
best result is displayed in bold and if there is another performance close to this result,
it is also displayed in bold. We can see that SMKGAI is attached to the best average
MAE (%) or is very close to the optimal result, except on the dataset ESL where the
linear regression and the additive utility (1-GAI) provide the best results. In particular,
for the datasets LEV and ERA, SMKGAI outperforms the baseline methods, showing

3www.openml.org (ESL, LEV and ERA)
4www.kaggle.com/datasets/blitzr/movehub-city-rankings
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the presence of interactions between more than two attributes in the data. Also, for the
datasets CPU, MPG and CITY, it seems that SMKGAI is able to adapt its complexity
to the underlying data since it provides results similar to the additive utility (1-GAI) or
2-additive GAI (2-GAI) depending on the case.

Data SMKGAI 1-GAI 2-GAI LR 2-add CI
ESL 0.084± 0.007 0.083 ± 0.006 0.084± 0.007 0.082 ± 0.006 0.085± 0.005
LEV 0.124 ± 0.027 0.232± 0.013 0.171± 0.012 0.235± 0.006 0.254± 0.014
ERA 0.047 ± 0.002 0.201± 0.011 0.118± 0.009 0.243± 0.005 0.243± 0.007
CPU 0.008 ± 0.005 0.009± 0.002 0.008 ± 0.005 0.028± 0.004 0.018± 0.007
MPG 0.052 ± 0.007 0.056± 0.011 0.054 ± 0.007 0.064± 0.003 0.101± 0.006
CITY 0.051 ± 0.009 0.049 ± 0.009 0.051± 0.009 0.063± 0.009 0.067± 0.008

Table 4.6: MAE (%) averaged over 10 random splits for SMKGAI (classical ANOVA)
and baseline methods.

Data SMKGAI 1-GAI 2-GAI LR 2-add CI

ESL 0.082± 0.007 0.081± 0.007 0.083± 0.007 0.080 ± 0.006 0.084± 0.007
LEV 0.145 ± 0.012 0.226± 0.013 0.212± 0.015 0.236± 0.013 0.251± 0.017
ERA 0.036 ± 0.007 0.216± 0.007 0.172± 0.007 0.252± 0.004 0.257± 0.005
CITY 0.045 ± 0.007 0.048± 0.006 0.048± 0.006 0.056± 0.006 0.066± 0.005

Table 4.7: MAE (%) averaged over 10 random splits for SMKGAI (anchored ANOVA)
and baseline methods.

4 Conclusion

We have presented a multiple kernel learning approach that constructs a sparse GAI
model from overall evaluation (regression) or pairwise comparisons examples to describe
and explain the value system of a decision maker. The core of the approach relies on
the determination of a sparse (classical or anchored) ANOVA decomposition of utilities
obtained thanks to the use of well-suited kernels (of zero integrals or zero values at an
anchor point). The advantage of the proposed approach is to be able to capture general
interactions among continuous or discrete attributes without prior restrictions on the
size of interacting factors. It makes it possible to fit model complexity to the available
preference information. The regularization used in the objective function ensures that
model complexity is kept as low as possible, given the descriptive constraints imposed
by preference data. As far as we know, this is the first learning method able to learn
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both the structure of the GAI decomposition (by identification of the factors that really
matter), and the utility functions defined on these factors, that can handle continuous
attributes and that does not use prior restrictions on the cardinality of the interactions.
In order to go further, some directions are worth investigating.

(1) A direction is to enhance the scalability of the method w.r.t. the number of at-
tributes, since the number of possible factors, and therefore the number of con-
straints in the optimization problem to be solved (see Problem 4.38 or 4.47), grows
exponentially. One path could be to bound from above the size of possible inter-
acting factors. Another possible path is to use an efficient iterative optimization
procedure to solve the MKL problem (see Problem 4.23) in the primal, for instance
using gradient descent on d [Varma and Ray, 2007, Rakotomamonjy et al., 2007,
2008], or using alternating minimization on d and α [Sonnenburg et al., 2006, Kloft
et al., 2011], or again using stochastic gradient descent [Orabona et al., 2012].

(2) Another interesting direction is the learning of monotonic GAI decomposition, i.e.,
such that for any S ⊆ N , uS is non-decreasing w.r.t. any variable xi, i ∈ S. Indeed,
in a multicriteria decision-making setting where the elements of Xi are assumed
to be ordered according to a weak order ≿i, such decomposition allows for a clear
interpretation as a positive effect of a factor uS can not be canceled by a negative
effect of some other sub-factors u′

S, S ⊆ S ′. A learning method was proposed in
[Grabisch et al., 2022] wherein the interactions are limited to pairs of attributes
and discrete attribute domains. Thus, an interesting direction could be to explore
how the learning of monotone GAI decompositions can be extended to continuous
attribute domains and arbitrary interaction degrees using multiple kernel learning.
However, how monotonicity can be incorporated into our method remains unclear.
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Summary

In this chapter, we propose an active preference learning method for determining
the weights of an aggregation function used by a DM to choose among a set of alternatives
described by multiple criteria. Here, active means that the proposed algorithm iteratively
selects the alternatives for the DM to compare instead of using a pre-collected database
of preference examples, resulting in an interactive process with her. The approach not
only reduces the weights indeterminacy to identify an optimal or near-optimal alternative
but also learns a predictive model capable of making relevant choices for new instances of
choice problems. Furthermore, the proposed approach is noise-tolerant in the sense that it
allows for the identification of the weights that best represent the DM’s preferences, even
if she sometimes deviates from it in the answers. This is made possible by leveraging
a general disagreement-based active learning approach for binary classification that is
guaranteed to be tolerant to noisy answers. The proposed method applies to various
weighted aggregation functions, linear or not, classically used in decision theory. This
chapter is based on the following publication: [Herin et al., 2024a].
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Introduction

In multicriteria choice problems, it is commonly accepted that the exploration of
admissible trade-offs should be restricted to Pareto-optimal solutions, i.e., solutions that
cannot be improved on one criterion without having to be degraded on another. These
solutions are, however, potentially very numerous, and it is necessary to collect additional
preference information to define how the evaluations from the different criteria combine
to define the overall preference. If the DM’s preferences are modeled by a utility function
Fw, parameterized by some weight vector w, the multicriteria choice problem can then
be reformulated as a problem of maximizing the scalarizing function over all feasible
performance vectors, i.e., the evaluation vectors associated with the alternatives in the
problem under consideration. We consider here a wide range of such functions from the
simplest such as the weighted sum, to more sophisticated and expressive models such as
the multilinear model and the Choquet integral (see Definition 1.15 and 1.9), which can
be used to model interactions between criteria, without forgetting weighted norms, such
as the weighted Chebyshev Norm (see Definition 1.16).

The phase of eliciting preferences and learning the weighting vector w is absolutely
crucial, as it completely determines the nature of the compromise that will be found
by optimizing Fw and the recommendation that will follow. A first family of approach
named incremental preference elicitation, consists in progressively reducing the space
of admissible parameters. Iteratively, a preference query is chosen, the answer to which
induces a new constraint on the parameter space [White et al., 1984]. A principle of active
question selection is often used, based on the minimization of maximum regret, to choose
the most informative question [Wang and Boutilier, 2003, Boutilier et al., 2006, Benabbou
et al., 2017a, 2020] and derive a robust recommendation. This principle of progressive
reduction of the uncertainty attached to w reveals quite efficient in practive but implictly
assumes that answers to preference queries are free of errors. Another approach, more
tolerant to noisy responses, is to manage a probability distribution (or other uncertainty
model [Adam and Destercke, 2024]) over the parameter space and revise it according
to the answers to questions, to choose a decision having the maximum expected value
[Chajewska et al., 2000] or minimizing the expectation of regret [Bourdache et al., 2019a].
Overall, incremental elicitation methods based on maximum regret are question-saving,
as they direct the questionnaire towards the resolution of a particular instance. On the
other hand, they do not produce a learned model and are generally not sufficient to solve
a choice problem involving a new set of alternatives.

An alternative approach to the problem is to adopt the preference learning per-
spective (or regression-based elicitation; see Section 3.2.2 or 2.2.2 in Chapter 1) and use
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a dataset of preference examples to perform regression, either on the values themselves
or on the order they induce, with the goal of determining the parameter w that best
fits these data. To determine the parameters of the aggregation function accurately and
reliably, the model must be trained on a large dataset of examples and requires signif-
icantly more preference queries than incremental approaches. On the other hand, this
approach is inherently tolerant to errors in the preference examples and the learned model
can be reused to solve new choice problems involving the same decision-maker and new
alternatives.

Contributions and Organization of the Chapter In this chapter, we propose a
hybrid active learning approach that combines the benefits of incremental preference
elicitation and preference learning. Specifically, it enables the rapid identification of the
optimal choice for the instance to be solved, while remaining resilient to noise in the DM’s
answers and providing a model capable of explaining the DM’s preferences and predicting
her choices on new instances of choice problems. To this end, we first present the principle
of incremental preference elicitation and discuss its limitations in handling noisy responses
(Section 1). We then present the disagreement-based active learning principle (Section
2.1) and propose an algorithm for active preference learning in a noisy setting (Section
2.2). Finally, in Section 3, we demonstrate its benefits using synthetic preference data.

Notations In the sequel, N = {1, . . . , n} denotes a set of criteria, and we assume that
the alternatives in the decision problem are described by their evaluation w.r.t. the n
criteria, i.e., by vectors of the form x = (x1, . . . , xn) ∈ X = [0, 1]n. Additionally, by
convention, for any t ∈ R, sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise. Moreover,
1[C] equals 1 when condition C is met and 0 otherwise.

1 Incremental Preference Elicitation

In this chapter, we consider a multicriteria choice problem over a finite set X ⊆ X
representing all feasible evaluation vectors. Then, the preferences of the DM over the
elements of X are modeled by a utility function in the form of an aggregation function
Fw, where the set of admissible parameter values for w is denoted by W . For instance,
if Fw is a weighted sum, then W corresponds to the n-dimensional simplex, i.e., {w ∈
Rn

+|w1 + . . .+wn = 1}. Similarly, if Fw is the Choquet integral,W is the set of capacities
defined on the power set of N . For a detailed introduction to standard aggregation
functions, we refer the reader to Section 1.3.1. In this setting, incremental preference
elicitation [White et al., 1984, Wang and Boutilier, 2003, Boutilier et al., 2006, Benabbou
et al., 2017a, Bourdache et al., 2019a, Adam and Destercke, 2024] aims to incrementally
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(x, x′) ≿

≺

x ≿ x′ ?
W W ′

yes

Figure 5.1: Illustration of incremental preference elicitation.

reduce the space of admissible values for parameter w, in collaboration with the DM, in
order to identify its preferred solution among X.

To this end, the DM is typically asked to compare pairs of alternatives, i.e., for a pair
x, x′ ∈ X, to answer the question: is x at least as good as x′?, which we denote by x ≿ x′?
in the following. The answer to such query can then be used to reduceW . For instance, if
the answer is yes, W can be reduced to W ′ = {w ∈ W|Fw(x) ≥ Fw(x′)}, as illustrated in
Figure 5.1. It is important to note that if Fw is linear in its parameter w, the constraints
Fw(x) ≥ Fw(x′) induces a linear constraint on W , justifying the representation of W and
W ′ as polyhedrons in Figure 5.1. The process can then be continued to incrementally
reduce the space W until it becomes sufficiently restricted to eliminate any ambiguity
about the DM’s preferences over X, and in particular, her most preferred option.

An active query selection strategy called the current solution strategy (CSS) [Wang
and Boutilier, 2003] is often used to guide the elicitation process. This querying strategy
is based on the notion of pairwise maximum regret, denoted by PMR, and defined for any
pair x, x′ ∈ X and set W as follows:

PMR(x, x′,W) = max
ω∈W
{Fω(x′)− Fω(x)} (5.1)

Intuitively, PMR(x, x′,W) quantifies the worst loss of utility (over all admissible
model parameter values) that the DM may suffer if x is recommended to her instead of
x′. Then, for an alternative x ∈ X, we can define the worst PMR w.r.t. all alternatives
x′ ∈ X, using the maximum regret, denoted MR, and defined as follows:

MR(x,X,W) = max
x′∈X

PMR(x, x′,W) (5.2)

Then, for a given admissible set W , a reasonable recommendation is that of the
alternative in X that has the lowest maximum regret. This lowest level of regret, denoted
by mMR, is referred to as the minmax regret, and defined by:

mMR(X,W) = min
x∈X

MR(x,X,W) (5.3)
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Indeed, let x∗ be the alternative of minimal MR, i.e., x∗ ∈ arg minx∈X MR(x,X,W)
and ϵ the associated MR, i.e., ϵ = mMR(X,W), then we have that for any x′ ∈ X and
w ∈ W :

Fw(x∗) ≥ Fw(x′)− ϵ

Then, x∗ emerges as a (quasi)-necessary optimal alternatives. However, if ϵ is too
high, additional information has to be collected to reduce the indetermination on the
optimal alternative. Then, the CSS strategy consists in asking the DM to compare x∗

with its best opponent i.e., x′ = arg maxx′∈X PMR(x∗, x′,W). Finally, the answer to the
query can be used to reduceW . This reduction necessarily yields a reduction of the mMR
as for any W ′ ⊆ W , it can easily be checked that:

mMR(X,W) ≥ mMR(X,W ′) ≥ 0

Therefore, this process can be incrementally conducted until the mMR reaches a
sufficiently low level. Such procedure is summarized in Algorithm 5.1 that takes as inputs
X, an initial set of admissible parameter values W0 and a desired reduction percentage
ρ ∈ [0, 1] of the mMR (compared to the first iteration).

Algorithm 5.1: Incremental preference elicitation (IPE)
Inputs: X, W0, ρ
mMR0 ← mMR(X,W0)
x̂0 ← arg minx∈X MR(x,X,W0)
k ← 1
while mMRk−1 > ρmMR0 do

x′k ← arg maxx′∈X PMR(x̂k−1, x
′,W)

if the answer to the query x̂k−1 ≿ x′k? is yes then
Wk ← {w ∈ Wk−1|Fw(x̂k−1) ≥ Fw(x′)}

else
Wk ← {w ∈ Wk−1|Fw(x̂k−1) < Fw(x′k)}

mMRk, x̂k ← mMR(X,Wk), arg minx∈X MR(x,X,Wk) ;
k ← k + 1 ;

Outputs: x̂k−1

This approach, which aims for questionnaire efficiency, is of course rather risky, as
it omits any validation operation through partial redundancy of questions, nor any com-
promise between partially contradictory answers within the framework of a given decision
model. The pitfalls of incremental elicitation by progressive and definitive reduction of
possible parameters are well illustrated by the following example.
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Figure 5.2: Illustration of the set of alternatives of Example 5.1.

Example 5.1. Consider a set X = {a0, . . . , aq} of q + 1 alternatives evaluated on two
criteria and represented by performance vectors ai = (i/q, (q − i)/q) for i = 0, . . . , q.
Suppose the DM has expressed a first preference ar ≻ at for two indices r, t ∈ {0, . . . , q}
such that r > t, as illustrated in Figure 5.2 for q = 7, r = 3 and t = 1 (ar and at

are respectively represented in green and dashed red). Suppose also we want to learn the
weights of a weighted sum model of the form Fw(x) = wx1 + (1 − w)x2 for an unknown
parameter w ∈ [0, 1]. The preference ar ≻ at implies war1+(1−w)ar2 > wat1+(1−w)at2 and
therefore wr+(1−w)(q−r) > wt+(1−w)(q−t), or equivalently w(r−t) > (1−w)(r−t),
hence w > 1−w and thus w > 1/2. Under this constraint, it’s easy to see that Fw(aq) >
Fw(ai) for all i < q. We indeed have Fw(aq) − Fw(ai) = wq − (wi + (1 − w)(q − i)) =
(2w− 1)(q− i) > 0 since w > 1/2 and q > i. Hence aq is necessarily an optimal solution
in X. Note, however, that if the decision-maker was mistaken in the first answer (at ≻ ar

being the actual preference), then the same reasoning would have led to the choice of a0.
In this case, the recommendation aq is in fact the worst possible recommendation given
the actual DM’s preferences.

Although this example is a bit of a caricature, it does illustrate that a concern for
efficiency in the active choice of a question to ask can lead to choices that are not robust
to noisy responses. In this paper, we will propose a non-Bayesian approach to active
learning of decision-maker preferences, which is more robust to noisy responses than
usual methods based on regret minimization and enables us to identify or approximate a
necessary winner in a given set of alternatives, as well as to build an explanatory model
of decision-maker preferences. This is achieved by leveraging disagreement-based active
learning, that we present in the following.

180



Chapter 5. Noise-tolerant Active Preference Learning for Multicriteria Choice Problems

2 Noise-tolerant Active Preference Learning

Active learning [Tong and Koller, 2000, Balcan et al., 2006, Zhan et al., 2021,
Cacciarelli and Kulahci, 2024] is a branch of machine learning that exploits the fact that,
by carefully selecting which labeled inputs to use, it is sometimes possible to achieve the
same generalization performance as in the passive setting (where models are trained on an
i.i.d. dataset of labeled inputs) while using fewer labeled examples. In particular, we focus
here on disagreement-based active learning [Dasgupta, 2011, Hanneke et al., 2014, Cortes
et al., 2019, DeSalvo et al., 2021], which is a family of theoretically grounded active
learning algorithms for binary classification. These algorithms share with incremental
preference elicitation methods the common objective of reducing the space of admissible
models as fast as possible in terms of the number of labeled inputs used (or number of
asked queries to the DM using the preference elicitation terminology). In the following,
we first present the basic disagreement-based active learning algorithms, and then we
propose a disagreement-based active preference learning method for choice problems,
which we illustrate on the toy case of Example 5.1.

2.1 Disagreement-based Active Learning

In binary classification, the data {(zk, yk)}tk=1 consists of inputs zk belonging to an
input space Z and their labels yk ∈ Y = {−1,+1}, assumed to be realizations of random
variables (Zk, Y k), k = 1, . . . , t, i.i.d. according to a joint distribution over Z×Y denoted
by D. The marginal of D over Z is denoted by DZ . Then, the goal of the learner is to
identify within a hypothesis class H (a set of candidate classifiers), a classifier h∗ : Z → Y
that minimizes the expected probability of making an incorrect prediction, i.e.:

h∗ ∈ arg min
h∈H

P(Z,Y )∼D(h(Z) ̸= Y ) (5.4)

Predictor h∗ is known as the Bayes predictor, and corresponds to the minimizer
of the true risk (see Section 3.1.1 in Chapter 1) when prediction errors are computed
with the 0-1 loss l(ŷ, y) = 1[ŷ ̸= y] since in this case R(h) = E(Z,Y )∼D[1[h(Z) ̸= Y ]] =
P(Z,Y )∼D(h(Z) ̸= Y ).

In this setting, the general idea of disagreement-based active learning is embodied
by the CAL algorithm [Cohn et al., 1994] (called after the authors’ names Cohn, Atla and
Ladner). Starting with H as the space of admissible models, CAL iteratively processes
a sequence of unlabeled points {zk}tk=1. At each iteration k, it asks for the label, if and
only if it does not have confidence in the answer and if so, revise accordingly the space
of models consistent with the new observed label. More precisely, let us denote by Hk
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the space of admissible models at iteration k such that H0 = H. Then, at each iteration
k, the learner asks for the true label of zk if and only if there is a disagreement within
Hk on its label, i.e., there exists two classifiers h1,h2 ∈ Hk such that h1(zk) ̸= h2(zk).
The portion of the input space Z in which this condition holds defines the disagreement
region. If asked, the newly obtained label yk provides the additional constraint h(zk) = yk

on the set of admissible models, which now excludes the models classifying zk differently,
i.e., Hk+1 = {h ∈ Hk|h(zk) = yk}. By doing so, the algorithm asks for a label if and only
if the new constraint h(zk) = yk surely reduces the space of admissible models, allowing
to narrow down the version space around h∗ with minimal labeling effort. Below, we
illustrate the space of admissible models along with the disagreement region for a simple
hypothesis class.

Example 5.2. Let Z = R2 and consider the hypothesis class H = {h : Z → Y|hw(z) =
sign(wz1 + (1 − w)z2), w ∈ [0, 1]}. Then, each positive (resp. negative) example induces
the constraint wz1 + (1−w)z2 ≥ 0 (resp. wz1 + (1−w)z2 < 0) on w, thus restricting H.
Let us now assume that the learner has received some positive and negative examples that
are represented in Figure 5.3 (right) by blue and dashed red points respectively. They thus
define an admissible space for w, i.e., to positively classify the point (-0.3 ,0.75) (blue
filled point in Fig. 5.3 (right)) w must satisfy 0.3w + (1 − w)0.75 ≥ 0 ⇐⇒ w ≥ 0.71,
and to negatively classify the point (-0.75,0.25) (red filled point in Fig. 5.3 (right)) w
must satisfy −0.75w+ (1−w)0.25 < 0⇐⇒ w > 0.25. This yields the interval of possible
values represented in Figure 5.3 (left). Some linear separators of the form wz1 +(1−w)z2

for w ∈ [0.25, 0.71] are represented by dotted lines in Figure 5.3 (right). Finally, the
disagreement region is represented by the shaded area, in which, for any point (z1, z2),
there always exists a weight w that would classify it positively and another that would
classify it negatively. Thus, at the next iteration, the CAL algorithm will request the label
of the new input if and only if it is located within this region.

Obviously, CAL works to identify h∗ under the hypothesis that it is compatible with
any observed example, i.e., h∗(zk) = yk (with probability 1) and thus R(h∗) = 0. In the
more realistic noisy case where R(h∗) > 0 (often referred to as the agnostic setting), the
hard constraints h(zk) = yk will eventually exclude h∗ from the set of admissible models.
Extensions of the CAL algorithm in the noisy case [Balcan et al., 2006, Dasgupta et al.,
2007] bypass this issue by defining the set of admissible models as the set of models
that proved to yield small errors on the labeled examples. Among them, the DHM
algorithm [Dasgupta et al., 2007] (also called after the authors’ names Dasgupta, Hsu,
and Monteleoni), which relies on supervised learning sub-tasks, provides a simple way of
cautiously excluding models associated with significantly high empirical errors. In the
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Figure 5.3: Set of admissible models (left) and disagreement region (right).

following, the empirical error of a model h on a set of labeled examples S = {(zk, yk)} is
denoted by RS(h) and defined as:

RS(h) = 1
|S|

∑
(z′ℓ,yk)∈S

1[h(zk) ̸= yk] (5.5)

The DHM algorithm is given in Algorithm 5.2. It incrementally processes a sequence
of unlabeled inputs {zk}tk=1 and, at each iteration k, updates the set of labeled inputs,
denoted by Tk, and the set of admissible models, denoted by Hk. More precisely, at each
iteration k, if there exists models in Hk−1 assigning +1 to zk (stored in H+

k ) and others
assigning -1 (stored in H−

k ), the algorithm determines among them, the models h+
k , h

−
k

that yield the lowest empirical errors on the labeled inputs so far (i.e., Tk−1). Then, if
RTk−1(hsk)−RTk−1(h−s

k ) exceeds a certain threshold ∆k for s ∈ {+,−}, models in Hs
k yield

empirical errors so high that it is unlikely h∗ belongs to this set. In this case, the update
Hk = H−s

k is thus applied and the label is not asked (agreement case). Remark that the
notion of agreement is more flexible than in the CAL algorithm where it is required to
have Hs

k = ∅ for s ∈ {+,−} to conclude to an agreement and not ask the label (this
case is omitted in Algorithm 5.2 for the sake of clarity but it is naturally treated as in
CAL i.e., Hk = H−s

k = Hk−1 and Tk = Tk−1). Otherwise, if h+
k and h−

k have comparable
errors on Tk−1, there is no clear evidence to determine whether h∗ belongs to H+

k or H−
k .

Thus, Hk = Hk−1 and the label yk of zk is requested and stored in Tk = Tk−1 ∪{(zk, yk)}
(disagreement case).

Let us now discuss in more details the calibration of the threshold ∆k. Suppose that
at some iteration k, we have RTk−1(hsk)− RTk−1(h−s

k ) > ∆k for s ∈ {+,−}. Assume now
that h∗ ∈ Hs

k. Thus, we have RTk−1(h∗) ≥ RTk−1(hsk) and RTk−1(h∗) − RTk−1(h−s
k ) > ∆k.

Intuitively, if ∆k represents an upper bound of the estimation error between the empirical
risk difference δk = RTk−1(h∗)−RTk−1(h−s

k ) and the true risk difference δ = R(h∗)−R(h−s
k )
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Algorithm 5.2: DHM
Inputs: H, {zk}tk=1
H0 ← H ;
T0 ← {(z0, y0)} ;
for k = 1, . . . , t do
H+
k ,H−

k ← {h ∈ Hk−1|h(zk) = 1},{h ∈ Hk−1|h(zk) = −1} ;
h+
k , h

−
k ← arg minh∈H+

k
RTk−1(h), arg minh∈H−

k
RTk−1(h);

if RTk−1(hsk)−RTk−1(h−s
k ) > ∆k for some s ∈ {+,−} then

Hk ← H−s
k , Tk ← Tk−1 #agreement;

else
yk ← label of zk;
Hk ← Hk−1,Tk ← Tk−1 ∪ {(zk, yk)} #disagreement;

k ← k + 1;
Outputs: Hk, Tk

(i.e., such that δk ≤ δ + ∆k with high probability), we obtain R(h∗) > R(h−s
k ) with high

probability. This is obviously contradictory the Bayes model definition (see Equation 5.4),
and thus we can conclude that with high probability h∗ ̸∈ Hs

k. Thus, ∆k is calibrated
to account for the estimation error between empirical and true risk differences. This
estimation error naturally depends on the flexibility of the hypothesis class H, that can
be quantified using the shatter coefficient which measures the maximum number of ways
H can label any set of k points, i.e.:

Definition 5.1 (shatter coefficient [Vapnik, 1995]). For any hypothesis classH and
k ∈ N, the kth shatter coefficient of H is denoted by S(H, k) and defined by:

S(H, k) = max
z1,...,zk∈Z

|{(h(z1), . . . , h(zk))|h ∈ H}| (5.6)

Then, threshold ∆k in Algorithm 5.2 can be calibrated using the following result:

Lemma 5.1 (see Corollary 1 in [Dasgupta et al., 2007]). For any δ > 0 let βk =√
(4/k) ln (8 (k2 + k)S(H, 2k)2/δ), h, h′ ∈ Hk and:

∆k(βk, h, h′) = β2
k + βk

(√
RTk−1 (h) +

√
RTk−1 (h′)

)
(5.7)

Then, with probability at least 1− δ, for any k ≥ 1 , :

RTk−1(h)−RTk−1(h′) ≤ R(h)−R(h′) + ∆k(βk, h, h′) (5.8)

Then, using Lemma 5.1, the following result sets the threshold value in Algorithm
5.2 so that the Bayes predictor is maintained in the set of admissible models. The proof
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is given to aid comprehension.

Lemma 5.2 (see Lemma 3 in [Dasgupta et al., 2007]). For any δ > 0, using ∆k :=
∆k(βk, h+

k , h
−
k ) (see Equation 5.7) in Algorithm 5.2, we have with probability at least 1−δ

that for any k ≥ 1:
h∗ ∈ Hk

Proof. We proceed by induction. At k = 0, h∗ ∈ H = H0 with probability 1. Assume
now that h∗ ∈ Hk−1 with probability at least 1 − δ for some k ≥ 1. If |RTk−1(h+

k ) −
RTk−1(h−)| ≤ ∆k(βk, h+

k , h
−
k ), then Hk = Hk−1 ∋ h∗ with probability at least 1 − δ. If

RTk−1(hsk) − RTk−1(h−s
k ) > ∆k(βk, hsk, h−s

k ) for s ∈ {+,−}, then RTk−1(hsk) > β2
k. We

assume now that h∗ ∈ Hs
k, then RTk−1(h∗) ≥ RTk−1(hsk), and thus we obtain:

RTk−1(h∗)−RTk−1(h−s
k ) = RTk−1(h∗)−RTk−1(hsk) +RTk−1(hsk)−RTk−1(h−s

k )

≥
√
RTk−1(hsk)(

√
RTk−1(h∗)−

√
RTk−1(hsk)) +RTk−1(hsk)−RTk−1(h−s

k )

> βk(
√
RTk−1(h∗)−

√
RTk−1(hsk)) + β2

k

+ βk

(√
RTk−1 (hsk) +

√
RTk−1

(
h−s
k

))
= ∆k(βk, h∗, h−s

k )

Thus using Lemma 5.1, we obtain that with probability at least 1 − δ, R(h∗) > R(h−s
k ),

which is contradictory with the definition of h∗ (see Equation 5.4), and thus h∗ ̸∈ Hs
k,

i.e., h∗ ∈ H−s
k = Hk since h∗ ∈ Hk−1 by induction hypothesis.

In the next section, we propose to exploit and extend DHM to the multicriteria
choice problem under noisy answers.

2.2 A Disagreement-based Active Preference Learning
Algorithm

We now introduce an algorithm to solve the choice problem with noisy answers
using disagreement-based active learning. It is designed to achieve a twofold objective:
on the one hand, quickly finding a near-optimal solution within X, and on the other hand,
assessing parameter w to have a predictive model Fw of DM’s preferences. To this end,
the proposed algorithm combines DHM (see Algo. 5.2) with a regret control mechanism
as in IPE (see Algo. 5.1). Before giving the algorithm, we first explicit how preference
learning from pairwise comparisons fits into the framework of binary classification.
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Preference learning as binary classification In the multicriteria choice problem
setting, the determination of the weight vector w ∈ W in the preference model Fw
from pairwise preference examples xℓ ≿ x′ℓ, xℓ, x′ℓ ∈ X can be formulated as a binary
classification problem where zℓ = (xℓ, x′ℓ) ∈ Z = X2 and yℓ = 1 if xℓ ≿ x′ℓ and yℓ = −1
otherwise (xℓ ≺ x′ℓ). In this case, the hypothesis class can be defined as follow:

H = {hw : X2 → R|hw(x, x′) = sign(Fw(x)− Fw(x′)), w ∈ W} (5.9)

Thus, H can be identified with the set of possible preferences induced by w ∈ W
trough model Fw. In this set, w∗ denotes the weight vector that best represents the DM’s
preferences, i.e., such that hw∗ is the Bayes predictor (see Eq. 5.4). Thus w∗ is referred to
as the Bayes weight in what follows. Furthermore, to ease notation, the empirical error of
hw on a labeled set S of examples (i.e., RS(hw); see Eq. 5.5), is now denoted by RS(w).

The proposed algorithm We propose to simulate a stream of examples of unlabeled
pairs of alternatives (xk, x′k) independently and uniformly drawn fromX, and to apply the
DHM algorithm to assess whether the labels are worth querying or not, and progressively
reduce the set of admissible weights without excluding the Bayes weight until a solution
with a sufficiently low maximum regret (see equation 5.2) emerges and can be recom-
mended. Using H of the form of Equation 5.9 and Hk :=Wk (and H+

k ,H−
k :=W+

k ,W−
k )

at any iteration k in the DHM algorithm (see Algorithm 5.2), we propose Algorithm 5.3.

To aid understanding of Algorithm 5.3, we now describe and illustrate it. It takes
as input the set of alternatives X, an initial set of admissible weight vectors W0, and
a desired reduction percentage ρ of the maximum regret of the recommended solution
(compared to the first iteration). Then, it sequentially proceeds pairs of alternatives
xk, x′k drawn randomly and uniformly from the set of alternatives X, and at iteration k,
asks for the DM to provide an answer yk to the pairwise comparison query xk ≿ x′k? if
and only if models within Wk−1 disagree on the label.

More precisely, if w+
k = arg minw∈W+

k
RTk−1(w), w−

k = arg minw∈W−
k
RTk−1(w) and

|RTk−1(w+
k ) − RTk−1(w−

k )| is lower than a certain threshold ∆k, the elements of Wk−1

somehow disagree on whether xk ≻ x′k or xk ≾ x′k. Indeed, the weight vectors verifying
xk ≿ x′k (W+

k ) and the weight vectors verifying xk ≺ x′k (W−
k ) are attached to similar

minimal errors on the learning database Tk−1. Therefore, the answer yk is likely to
provide new information, and thus the query xk ≿ x′k? is asked to the DM. Then, the
answer yk is stored as a new preference example (xk, x′k, yk) in the learning database, i.e.,
Tk = Tk−1 ∪ {(xk, x′k, yk)}. This case is illustrated in Figure 5.4.

However, if |RTk−1(w+
k )−RTk−1(w−

k )| > ∆k , the elements ofWk−1 somehow agree on
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Algorithm 5.3: Active preference learning
Inputs: W0, X, ρ
draw a pair (x0, x′0) uniformly in X2

y0 ← answer to the query x0 ≿ x′0?
T0 ← {(x0, x′0, y0)},MR0 ← 1, k ← 1
while MRk−1 > ρMR0 do

draw a pair (xk, x′k) uniformly in X2

W+
k ,W−

k ← {w ∈ Wk−1|Fw(xk) ≥ Fw(x′k)},{w ∈ Wk−1|Fw(xk) < Fw(x′k)}
if W+

k ̸= ∅ and W−
k ̸= ∅ then

w+
k , w

−
k ← arg minw∈W+

k
RTk−1(w), arg minw∈W−

k
RTk−1(w)

if W−
k ̸= ∅ and (W+

k = ∅ or RTk−1(w+
k )−RTk−1(w−

k ) > ∆k) then
Wk ←W−

k , Tk ← Tk−1
else if W+

k ̸= ∅ and (W−
k = ∅ or RTk−1(w−

k )−RTk−1(w+
k ) > ∆k) then

Wk ←W+
k , Tk ← Tk−1

else
yk ← answer to the query xk ≿ x′k?;
Wk ←Wk−1,Tk ← Tk−1 ∪ {(xk, x′k, yk)}

ŵk ← arg minw∈Wk
RTk

(w)
x̂k,MRk ← arg maxx∈X Fŵk

(x),MR(x̂k,Wk)
k ← k + 1

Outputs: ŵk−1,x̂k−1, MRk−1

whether xk ≿ x′k or xk ≾ x′k, since one of the two setsW+
k ,W−

k yields significantly higher
errors on the learning database Tk−1 than the other, and thus is not likely to contain the
best predictor w∗. Then, the query is not worth asking and the algorithm exploits the
agreement of Wk−1 on the instance (xk, x′k) to reduce, with high confidence, the set of
admissible models by adding the preference as a hard constraint, i.e., Wk = W+

k , if W+
k

yields the smallest error, and Wk =W−
k otherwise. In this case, no example is added to

the learning database, i.e., Tk = Tk−1. It is illustrated in Figure 5.5.
This cautious reduction of the set of admissible weights makes it possible to in-

crementally control the remaining level of uncertainty on the DM’s best alternative in
X, as in incremental preference elicitation (see Algorithm 5.1). Indeed, at the end of
iteration k, the learned model is ŵk = arg minw∈Wk

RTk
(w) and naturally the recom-

mended solution is x̂k = arg maxx∈X Fŵk
(x). Then, the remaining level of uncertainty

on the DM’s best alternative is assessed by computing the maximum regret attached
to the recommendation of x̂k knowing that the current set of admissible weights is Wk,
i.e., MRk = MR(x̂k,Wk). Once MRk is sufficiently reduced (ratio MRk /MR1 below
threshold ρ ∈ [0, 1)), the algorithm stops and outputs a recommended solution x̂k.

It is important to note that at each iteration, Algorithm 5.3 requires minimizing
RTk

(w) overW+
k ,W−

k andWk and (see line 8 and 17 in Algorithm 5.3 ). However, function
w 7→ RS(w) is non-convex and discontinuous for any set of labeled examples S, making
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Figure 5.5: Illustration of the agreement case.

its optimization intractable. Here, to bypass this issue, we start with a set of admissible
modelsW0 that is a generated finite approximation ofW such thatW0 ⊆ W (obtained for
instance with a uniform sampling of W), and solve the optimization tasks by exhaustive
search on W0 (or Wk later on in the algorithm). An important consequence follows from
this choice: as no optimization task is performed over parameter w the algorithm applies
to a broad class of aggregation functions Fw, including not only linear but also non-linear
functions in their parameters, such as the Chebyshev norm (see Definition 1.16), for
instance.

Then, using Lemma 5.2, we establish Proposition 5.1 showing how threshold values
∆k can be set to make sure thatWk, k ≥ 1 contain with high probability the Bayes weight
vector w∗. It also shows that with high probability MRk upper bounds the regret of the
recommended solution under w∗, i.e., maxx∈X{Fw∗(x) − Fw∗(x̂k)} and thus is a sound
indication of the remaining level of uncertainty on the recommended solution.

Proposition 5.1. For δ > 0 , γk =
√

(4/k) ln (8 (k2 + k) |W0|2/δ) and ∆k := ∆k(γk, w+
k ,

w−
k ) given by Equation 5.7, with probability at least 1 − δ, we have for any k ≥ 1 in

Algorithm 5.3:

w∗ ∈ Wk (5.10)
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and MRk upper bounds the real regret, i.e.:

MRk ≥ max
x∈X
{Fw∗(x)− Fw∗(x̂k)} (5.11)

where x̂k = arg maxx∈X Fŵk
(x) is the recommended solution at iteration k.

Proof. Algorithm 5.3 is Algorithm 5.2 (DHM) with a modified stopping criterion for H =
{hw : X2 → R|hw(x, x′) = sign(Fw(x) − Fw(x′)), w ∈ W0} and a dataset of samples
(xk, x′k) i.i.d. according to the uniform distribution over X2. Then, by Lemma 5.2, for
∆k := ∆k(βk, w+

k , w
−
k ) given by Equation 5.7 with βk =

√
(4/k) ln (8 (k2 + k)S(H, 2k)2 ,

with probability at least 1− δ, we have w∗ ∈ Wk, for any k ≥ 1. Thus, it is sufficient to
show that Lemma 5.2 is still verified using γk =

√
(4/k) ln (8 (k2 + k) |W0|2/δ).

Firstly, by definition of the shatter coefficient (see Definition 5.1), for any k ≥ 1:

S(H, 2k) ≤ |H| ≤ |W0| (5.12)

Thus, γk ≥ βk and by Equation 5.7, ∆k(γk, w+
k , w

−
k ) ≥ ∆k(βk, w+

k , w
−
k ). Let us now

denote Wk and W ′
k the sets of admissible hypothesis at iteration k in Algorithm 5.3

with ∆k := ∆k(γk, , w+
k , w

−
k ) and ∆k := ∆k(βk, w+

k , w
−
k ) respectively. Then we show that

W ′
k ⊆ Wk for any k ≥ 0 (with probability 1). We proceed by induction. At k = 0,
W ′

0 = W0. Assuming that W ′
k−1 ⊆ Wk−1 for some k ≥ 1, at the next iteration, if

|RTk−1(w+
k ) − RTk−1(w−

k )| ≤ ∆k(βk) ≤ ∆k(γk), then W ′
k = W ′

k−1 ⊆ Wk−1 = Wk. If
∆k(βk) < |RTk−1(w+

k ) − RTk−1(w−
k )| ≤ ∆k(γk), then W ′

k = W ′
k−1 \ W ′s

k for some s ∈
{+,−} and Wk−1 = Wk, and thus W ′

k ⊆ W ′
k−1 ⊆ Wk−1 = Wk. Finally if ∆k(βk) ≤

∆k(γk) < |RTk−1(w+
k )−RTk−1(w−

k )|, then W ′
k =W ′

k−1 \W ′s
k ⊆ Wk−1 \Ws

k =Wk for some
s ∈ {+,−}. Therefore, in any case, W ′

k ⊆ Wk. Intuitively, the higher the threshold, the
more cautious the algorithm and the slower the reduction of the set of admissible sets.
Then, w∗ ∈ W ′

k ⊆ Wk for any k ≥ 1 with probability at least 1− δ. Thus, with probability
at least 1− δ, maxx∈X{Fw∗(x)−Fw∗(x̂k)} ≤ maxw∈Wk

maxx∈X{Fw(x)−Fw(x̂k)} = MRk.

In the next section dedicated to numerical tests, we will see that ∆k(γk, w+
k , w

−
k )

is an over-cautious threshold, that may induce many preference queries. In practice, a
more aggressive threshold α∆k(γk, w+

k , w
−
k ) where α ∈ [0, 1] can be used to reduce the

number of preference queries without too much sacrificing the recommendation quality.
Parameter α can be set using cross-validation on a small test set of preference examples
{(xk, x′k, yk)}. On the other side, parameter δ is set to 0.95.
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2.3 Illustration on a Toy Example

To illustrate the benefit of Algorithm 5.3 for preference elicitation with noisy an-
swers, we exploit the easy-to-grasp toy case of Example 5.1 on the choice set X =
{a0, . . . , aq} illustrated in Figure 5.2. The first pair under consideration is (x0, x′0) =
(ar, at) with r > t. Since the first DM’s preference statement is ar ≻ at, Algorithm
5.3 starts with the initial learning database T0 = {(x0, x′0, 1)}. Then, examples of pairs
(xk, x′k) = (ark , atk) are repeatedly drawn uniformly from X2 (where we always have
rk ≥ tk without loss of generality). Algorithm 5.3 then either asks the query ark ≿ atk?
or if confident enough to predict the DM’s answer, does not ask the query and updates
the current set of admissible weights accordingly to either W+

k = [1
2 , 1] or W−

k = [0, 1
2)

(if rk > tk). In this case, the recommended alternative x̂k = arg maxx∈X Fŵk
(x) with

ŵk = arg minw∈Wk
RTk

(w) is necessarily aq if Wk = [1
2 ; 1] or a0 if Wk = [0; 1

2). Then, in
any case, MR(x̂k) = 0 and the algorithm stops. Indeed, for instance if Wk = [1

2 ; 1], we
have:

max
r∈{0,...,q}

max
w∈[1/2,1]

(Fw(ar)− Fw(aq)) = max
r∈{0,...,q}

max
w∈[1/2,1]

{(r − q)(2w − 1)} = 0

Also, at each iteration k such that rk > tk, it can easily be checked that:

RTk−1(w+
k ) = min

w∈[1/2,1]
RTk−1(w)

= min
w∈[1/2,1]

1
|Tk−1|

k−1∑
i=0

1[Fw(ari)− Fw(ati) ̸= yi]

= 1
|Tk−1|

k−1∑
i=0

1[1 ̸= yi]

A similar reasoning yields RTk−1(w−
k ) = 1

|Tk−1|
∑k−1
i=0 1[−1 ̸= yi]. Thus RTk−1(w−

k )
and RTk−1(w+

k ) are respectively the frequencies of occurrences of preferences of type
ari ≿ ati and of type ari ≺ ati in the sequence of the past DM’s preference statements.
Thus, Algorithm 5.3 recommends a solution when one of the two frequencies becomes
significantly higher than the other, i.e., with a difference higher than α∆k(γk, w+

k , w
−
k )

which, according to Proposition 5.1, is decreasing with k. This choice process is more
robust than taking for granted the very first DM’s preference statement, as illustrated
below.

In Table 5.1, we present numerical results obtained for the described toy case with
q = 20. To assess the benefit of Algorithm 5.3 in the context of noisy answers we introduce
a random noise in the simulated DM’s answers which swaps the answers with probability
p = 0.1 and then p = 0.3. Parameters α and ρ of Algorithm 5.3 are respectively set to
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p = 0.1 p = 0.3

Nb. of queries Rec. accuracy Nb. of queries Rec. accuracy

Algorithm 5.1 1.0 89% 1.0 74%
Algorithm 5.3 3.5 99% 14.0 90%

Table 5.1: Comparison of Algorithm 5.3 and Algorithm 5.1 over 100 simulations.

α = 0.05 and ρ = 0. For the two noise levels, we compare Algorithm 5.3 to Algorithm 5.1
on 500 simulations in terms of number of queries and accuracy of the recommendation
(number of simulations where the recommendation was correct). Looking at the results,
we can see that Algorithm 5.1, while always terminating after one query, suffers from noisy
answers and does recommend the optimal alternative in only 89% of the time for the low
noise level, and 74% of the time for the high noise level. On the contrary, Algorithm 5.3
recommends the optimal alternative in nearly 100% of the time for the low noise level
while asking only 3.5 questions on average, and in 90% of the time for the high noise level
with about 14 questions on average. Further tests are conducted in the next section.

3 Numerical Tests

In this section, we present the results of numerical tests performed on synthetic
preference data. We test the ability of Algorithm 5.3 to provide accurate recommen-
dations while receiving noisy answers from the DM, and when possible, we compare
those results to Algorithm 5.1. The tests are conducted with Fw taken as the weighted
sum, the 2-additive Choquet integral and the Chebyshev distance. We consider ran-
dom finite sets of admissible models W0 ⊆ W of size |W0| = 5000 for each experi-
ment. For the weighted sum and the Chebyshev distance to the ideal point, W0 is
obtained by uniform sampling of the simplex W = {w ∈ [0, 1]n|∑n

i=1 wi = 1}. For
the 2-additive Choquet integrals, the set of admissible weights is the set of capacities
W = {w : 2N → R|A ⊆ N,w(A) ≤ w(B), w(∅) = 0, w(N) = 1}, restricted to 2-additive
capacities. The set of 2-additive capacities is a polyhedron admitting a polynomial num-
ber of extreme points [Grabisch et al., 2016] (Theorem 2.65), namely, the unanimity
games defined for any i ∈ J1, n(n+1)

2 K by:

vi(S) =

1 if Yi ⊆ S

0 otherwise

where Yi ⊆ N is any nonempty subset of size at most 2, and the conjugates of unanimity

191



Chapter 5. Noise-tolerant Active Preference Learning for Multicriteria Choice Problems

games defined for any i ∈ Jn(n+1)
2 + 1, n2K by:

vi(S) =

1 if Yi ∩ S ̸= ∅

0 otherwise

Hence, any 2-additive capacity w can be generated by a convex combination w = ∑q
i=1 βivi

with q = n2,βi ∈ [0, 1], ∑q
i=1 βi = 1. Thus, we obtain samples W0 of the set of 2-additive

capacities by uniform sampling of the simplex {β ∈ [0, 1]q|∑q
i=1 βi = 1}.

For all the experiments, the DM’s answers are simulated according to a ground truth
model Fwgt with a random weight vector wgt generated in the same way as the elements
of W0. The answers are disturbed with random noises ϵ such that yk = sign(Fwgt(x) −
Fwgt(x′) + ϵk) and ϵk is uniformly distributed within [−σ, σ] with noise level σ > 0, for
any k.

In the first experiment, we compare the noise tolerance of Algorithm 5.3 and Al-
gorithm 5.1 when Fw is the Choquet integral, n = 5, and |X| = 100 (containing solely
Pareto-optimal solutions). Parameter α of Algorithm 5.3 is set to α = 1.7×10−2. Figures
6.7 and 6.8 respectively show, for Algorithm 5.3 and Algorithm 5.1, the average rank in
the DM’s hidden ranking (right) and regret (left) of the recommended solution over 100
simulations w.r.t. the number of query. More precisely, 6.7(left) shows the real regret
of the recommended solution by Algorithm 5.3, i.e., maxx′∈X{Fwgt(x′)−Fwgt(x̂k)} (plain
green line) along with the upper bound MRk (dotted green line). Note that both values
are represented in percentage w.r.t. MR1. Then, in Figure 6.8(left) is represented the real
regret of the recommended solution by Algorithm 5.1 (plain orange line) along with the
min-max regret (i.e., mMR(X,Wk)). Note that both values are represented in percentage
w.r.t. mMR(X,W0). In Figure 6.8, we observe that while the min-max regret quickly
reduces with Algorithm 5.1, it does not induce a reduction of the real regret and yields
recommended solutions with increasing real ranks. On the contrary, in Figure 6.7, we
observe that while decreasing more slowly, the bound MRk of Algorithm 5.3 decreases
accordingly with the real regret and rank of the recommended solution x̂k. After 30
queries, the real rank of the recommended solution is about 8 for Algorithm 5.3 and 16
for Algorithm 5.1.

In the second experiment, we show different tradeoffs between quality of the rec-
ommendation and number of asked queries that can be achieved with Algorithm 5.3
by varying the α parameter, which controls the threshold value α∆k. The tests are con-
ducted for the Chebyshev distance for n = 10, X = 100 (containing solely Pareto-optimal
solutions) and α varying in a uniform grid within [5 × 10−3, 5 × 10−2]. The results are
averaged over 100 simulations, and for this experiment, the DM’s answers are disturbed
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(a)

(b)

Figure 5.6: Real regret and real rank for Algorithm 5.3 (a) and Algorithm 5.1 (b).

with a random noise which swaps the answers with probability p = 0.1 and then p = 0.2.
For both noise levels, Figure 5.7a (left) represents the average real regret of the recom-
mended solutions (in percentage w.r.t. MR1) versus the average number of asked queries
and Figure 5.7a (right) shows the average real rank of the recommended solution, again
versus the average number of queries. For all figures, the higher the α value, the higher
the caution level of Algorithm 5.3, and thus the higher the number of asked queries. For
p = 0.1 (red), asking 7 queries yields a real regret of 20% in average with an average real
rank equal to 21 and asking 50 queries reduces the real regret to 10% and the average
rank to 8. When the noise level increases, the performances weaken. For instance, for
p = 0.2, 7 questions yield an average real rank equal to 26.

In the third experiment, we compare Algorithm 5.3 to another non-Bayesian ac-
tive learning method recently proposed for linear models [Pourkhajouei et al., 2023, Es-
camocher et al., 2025]. This method also exploits the idea of minimizing the 0-1 loss error
on the set of admissible models W instead of irreversibly reducing the set of admissible
models such as in Algorithm 5.1. However, while being effective at solving choice prob-
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(a) (b)

Figure 5.7: Real regret (a) and rank (b) w.r.t. query number with Algorithm 5.3.

lems with small number of queries, the used querying strategy focuses only on the most
plausible best elements of X, and thus, the learned model shows lower generalization
performances on X and is farther from the hidden model wgt than the one obtained with
Algorithm 5.1. This can be seen in Table 5.2 where both methods are compared in terms
of query number and real rank of the recommended solutions; we also give the average
absolute distance to wgt of the learned preference model and the test accuracy defined
as the percentage of preference inversion on a test set of pairwise comparison in X . The
tests are conducted with Fw taken as the weighted sum, n = 10, σ = 0.05, |X| = 1000
(containing solely Pareto-optimal solutions) and for Algorithm 5.3 the parameter are set
to α, ρ = (2 × 10−10, 0.5) which allow yielding similar query numbers for both methods.
We observe that while yielding similar results in terms of query number and real rank,
Algorithm 5.3 better recovers preference model wgt and achieves a higher test accuracy.
Computation times are comparable for both methods (3.35 sec. for Algorithm 5.3 and
1.33 sec for [Pourkhajouei et al., 2023] on average).

Query number Real rank Distance to wgt Test accuracy

Algorithm 5.3 68.0± 22.7 40.1/1000± 59.8 0.03± 0.01 88.5%± 2.5%
[Pourkhajouei] 60.9± 17.3 44.75/1000± 81.13 0.07± 0.02 78.0%± 5.0%

Table 5.2: Comparison with [Pourkhajouei et al., 2023] over 100 simulations.

4 Conclusion

We have presented a new approach for determining an optimal solution in a given
set, by actively learning the parameters of an aggregation function describing the DM’s
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preferences. This approach is a cautious version of the standard Algorithm 5.1 based on
the minimax regret criterion that progressively reduces the set of admissible model pa-
rameters, until a zero-regret (or near-zero-regret) solution appears as a necessary winner.
In our view, our approach offers three significant advantages.

Firstly, it is more error-tolerant, since the DM’s responses are not systematically
interpreted as hard constraints on the parameter space. The numerical tests carried out
in Section 4 clearly demonstrated the gain in robustness in the face of noisy responses.
The second advantage is that, beyond the identification of an optimal choice, the method
provides a learned model that can be used to explain decisions and make choices on new
instances. Finally, it does not require the scalarizing function to be linear in its parameters
and thus applies to a wider class of aggregators, including the weighted Chebyshev norm,
or the Sugeno integral that is generally not learned by regret minimization.

Algorithm 5.3 also brings some advantages compared to recently proposed ap-
proaches for preference learning with noisy DM’s answers, whether Bayesian [Chajewska
et al., 2000, Bourdache et al., 2019a] or non-Bayesian [Pourkhajouei et al., 2023]. On
the one hand, being non-Bayesian, the proposed approach does not require knowledge
of a prior distribution on the model parameters, a strong assumption often necessary
to initiate Bayesian learning. On the other hand, concerning non-Bayesian approaches,
the numerical tests presented at the end of Section 4 show that Algorithm 5.3, while
exhibiting comparable performance to recent alternative proposals [Pourkhajouei et al.,
2023] in terms of robustness to noisy responses, achieves significantly better generaliza-
tion performance and thus is likely to make better decision on new instances of choice
problems.

An interesting research direction would be to no longer start from a discrete subset
W0 of the set of admissible weights W , but to work directly with the latter, in order to
fully exploit the richness of the chosen aggregation function. This requires addressing
two challenges:

• The hypothesis class H associated with W (see Equation 5.9) is no longer discrete.
Thus, its shatter coefficient is known to be in O(kd) (Sauer’s Lemma [Sauer, 1972])
where d is its Vapnik-Chervonenkis (VC) dimension, which corresponds to the max-
imum number of points k such that S(k,H) = 2k (i.e., every possible labeling of
these points can be realized by some hypothesis in H). Therefore, deriving the VC
dimension of the hypothesis class associated with the different aggregation functions
is necessary to compute the threshold ∆k used in Algorithm 5.3. More specifically,
as shown in Proposition 5.1, an upper bound is sufficient. Some contributions have
addressed this question for the Choquet integral [Hüllermeier and Fallah Tehrani,
2012, Basu and Echenique, 2020]. In particular, by leveraging the fact that any
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linear classifier of dimension d has a VC dimension of d+ 1 (see for instance [Vap-
nik, 1995]; Chapter 3) and that, using the Möbius transform, the Choquet integral
expresses as a linear model in a space of dimension 2n − 1 (see Equation 1.5), an
upper bound in O(2n) can be obtained. However, whether a tighter bound exists
remains an open question (this is critical for Algorithm 5.3, as a looser upper bound
results in a higher number of queries to the DM). Also, to the best of our knowledge,
no contributions address this question for non-linear aggregation functions such as
the Chebyshev norm or the Sugeno integral.

• Avoiding the discretization of the space W means having to optimize the 0-1 loss
over W in Algorithm 5.3. One way to avoid this typically intractable optimization
task is to replace it with a convex surrogate loss, such as the hinge loss l(y, h(x)) =
max{0, 1−h(x)y}. Then, as this convex continuous loss can be linearized, we end up
with linear programming when aggregation functions linear in their parameters are
considered. An extension of DHM with surrogate loss that preserves its theoretical
properties has been proposed [DeSalvo et al., 2021] and could then be used in this
case.
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Summary

In this chapter, we introduce an online algorithm for learning capacity-based prefer-
ence models, designed for decision contexts where preference examples arrive sequentially.
Specifically, the proposed method learns sparse representations of capacities by leveraging
regularized dual averaging with ℓ1-regularization, which reduces the online learning prob-
lem to simple optimization tasks that admit closed-form solutions. Thus, the proposed
algorithm is also well fitted to decision contexts involving a large number of preference
examples or a large number of criteria. Moreover, we propose a variant making it possible
to include normative constraints on the capacity (e.g., monotonicity, supermodularity),
based on the alternating direction method of multipliers. This chapter is based on the
following publication: [Herin et al., 2024d].
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Introduction

In this chapter, we propose online algorithms for learning capacity-based preference
models (including the Choquet integral and multilinear utility). While the identification
of capacities in preference models has already been the subject of several studies [Grabisch
et al., 2008, Tehrani and Hüllermeier, 2013, Benabbou et al., 2017a, Beliakov and Wu,
2019a, Bresson et al., 2020, Pelegrina et al., 2020b, Herin et al., 2023a], some of which
were presented in previous chapters, the potential contribution of online learning to the
identification of capacities remains underexplored despite a recent attempt [Kakula et al.,
2020b] focusing on the Choquet integral without the monotonicity constraint. Indeed,
the step of learning preferences is often envisaged in batch mode, i.e., it is assumed that
a history of previous decisions is available, or a database of examples of pairwise com-
parisons, which will be exploited in its entirety to adapt a generic decision model to the
user’s value system [Fürnkranz and Hüllermeier, 2010a, Domshlak et al., 2011a, Aggarwal
and Fallah Tehrani, 2019]. However, in other contexts, particularly that of recommender
systems [Zhao et al., 2016], examples of preferences arrive sequentially, because they are
collected progressively from recent user’s feedback or answers to preference queries. In
this case, for reasons of reactivity, it is generally preferable to adapt the current model to
the margin using the new example (online learning), rather than restart the learning pro-
cess from scratch on the set of available examples. When the entire database of examples
is available but very large, it can also be efficient to consider these examples sequentially
and use online learning [Shalev-Shwartz, 2012, Hoi et al., 2021].

Contributions and Chapter Organization Our contribution in this chapter is to
introduce online learning algorithms suitable for a wide class of capacity-based decision
models, including the Choquet integral and the multilinear model. Specifically, we build
on the regularized dual averaging (RDA) method [Xiao, 2010] to learn sparse Möbius
representations of capacity with a computationally efficient online learning procedure,
allowing to handle problems involving up to more than 20 criteria (Section 1). We also
proposes a novel extension of RDA to include normative constraints on capacities such
as monotonicity and supermodularity, by combining RDA and the alternating direction
method of multipliers (ADMM) [Glowinski and Marroco, 1975, Boyd et al., 2011] (Section
2). Finally, Section 3 presents numerical test results illustrating the effectiveness of the
proposed approach.

Notations Recall that N denotes the set of viewpoints, i.e., N = {1, . . . , n} and that
the notation S ⊆ N excludes the empty set by convention. The set of alternatives is
defined as X = [0, 1]n. Also, for any x = (x1, . . . , xn) ∈ X and S ⊆ N , xS refers to the

198



Chapter 6. Online Learning of Capacity-based Preference Models

restriction of x to the components xi, i ∈ S.
In this chapter, as in Chapter 3, we consider a general capacity-based preference

model Fm, that associates to any alternative x ∈ X , the value:

Fm(x) = ∑
S⊆N m(S)ϕS(xS) (6.1)

where for any S ⊆ N , m(S) is the Möbius mass on S, and the associated capacity is
defined by w(S) = ∑

T⊆Sm(T ). Additionally, ϕS aggregates the quantities xi, i ∈ S to
define the interaction term ϕS(xS). Recall that ϕS is the product if Fm is the multilinear
utility (see Equation 3.1) and ϕS is the min (resp. max) operation if Fm is the conjunctive
(resp. disjunctive) form of the Choquet integral (see Equation 3.2 and 3.3). Note that,
from now on, m and ϕ(x) respectively refer to the vectors m = (m(S))S⊆N and ϕ(x) =
(ϕS(xS))S⊆N , indexed by the subsets S ⊆ N numbered in lexicographic order. Using
these notations, function Fm(x) reads as the following inner product Fm(x) = m⊤ϕ(x).
The set of admissible vector m is denoted by M, and is typically a subset of R2n−1.

Additionnally, for any vector u ∈ Rd, [u]+ denotes the component-wise positive
part, i.e., [u]+ = (max(0, ui))di=1, and sign(u) denotes the vector whose components are
defined by sign(u)i = 1 if ui > 0, sign(u)i = −1 if ui < 0 and sign(u)i = 0 otherwise,
i = 1, . . . , d. Also, for any sequence of vector {uτ}tτ=1, ūt denotes its average value, i.e.,
ūt = 1

t

∑t
τ=1 uτ , and for two vectors v, u ∈ Rd, v ∗ u denotes the element-wise product.

Finally, for easier reading, a summary of the acronyms used in this chapter is provided:

1 Online Learning of Sparse Möbius Representations
of the Capacity

1.1 Online Sparse Learning

1.1.1 Online Learning and Online Convex Optimization

Online learning algorithms [Shalev-Shwartz, 2012, Orabona, 2019, Hoi et al., 2021]
work sequentially: starting from an initial model m1, the algorithm updates it iteratively
as new instances are observed. More precisely, at each round t, a new instance is received,
the learner makes a prediction using the current model mt, and the true label of the
instance is received. In the case of an incorrect prediction, the learner then suffers a
certain loss lt(mt), where lt :M→ R is an instantaneous loss function, and updates the
model accordingly. For instance, when learning Fm (see Equation 6.1) in a regression
setting, the learner typically receives at round t an instance xt ∈ X , makes a prediction
Fmt(xt) = m⊤

t ϕ(xt), receives the true value yt ∈ R, and then incurs a loss measured as

199



Chapter 6. Online Learning of Capacity-based Preference Models

Acronyms Description Reference

OCO Online Convex Optimization page 200
OGD Online Gradient Descent page 201
OMD Online Mirror Descent page 202

Generalization of OGD with Bergman divergences.
One of the two main families of OCO algorithms.

FOBOS Forward-Backward Splitting page 203
OGD with composite loss.

FTRL Follow-the-Regularized-Leader page 204
One of the two main families of OCO algorithms.

RDA Regularized Dual Averaging page 204
FTRL with composite loss.

ADMM Alternating Direction Method of Multipliers page 211
Family of optimization algorithms leveraging
problem decompositions.

Table 6.1: List of acronyms used in this chapter.

the discrepancy between the predicted value and yt, i.e., lt(mt) = l(yt,m⊤
t ϕ(xt)), where

l : R× R→ R is a regression loss function.
In what follows, received loss functions lt are assumed to be convex functions and

M is a non-empty closed convex set. In this case, the online learning procedure falls into
online convex optimization (OCO) [Shalev-Shwartz, 2012, Hazan et al., 2016], which may
be formalized as in Algorithm 6.1.

Algorithm 6.1: Online Convex Optimization
Inputs: a convex set M, a total number of iterations T
for t = 1, . . . , T do

pick mt ∈M
receive a convex loss lt :M→ R
incur loss lt(mt)

Outputs: mT

One desirable property of an OCO algorithm is the guarantee that the cumulative
loss after T rounds is close to the minimal cumulative loss one could obtain with all the
instances in hand. The gap between the two quantities is referred to as the regret against
the best fixed model and can be formally defined as follows:

Definition 6.1. For any T ∈ N and any sequences of losses and models {lt,mt}t=1,...,T ,
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the regret against the best fixed model, denoted by RT , is defined by:

RT =
T∑
t=1

lt(mt)− min
m∈M

T∑
t=1

lt(m)

Also, the regret w.r.t. any model m ∈M is denoted by RT (m) = ∑T
t=1 lt(mt)−

∑T
t=1 lt(m).

Thus, an OCO algorithm typically updates model mt at each round t, in such a way
that the average regret against the best fixed model vanishes when the number of rounds
goes towards infinity, i.e., limT→∞

RT

T
= 0. The regret is then said to be sublinear in T .

As we will see in what follows, guaranteeing such behavior is possible under the following
assumption, which we will consider to hold throughout the chapter.

Assumption 6.1 (bounded loss subgradients). For any t, function lt is subdifferen-
tiable and of bounded subgradients, i.e., there exists G ∈ R+ such that, ∥gt∥2 ≤ G for any
gt ∈ ∂lt(mt), mt ∈M.

Note that in the context of learning the model Fm, Assumption 6.1 may require
considering a bounded set X , and in some cases, even a bounded model space M and
a bounded set of labels, as for instance, in the regression setting with the squared loss
lt(mt) = (yt −m⊤

t ϕ(xt))2, we have ∂lt(mt) = {−2ϕ(xt)(yt −m⊤
t ϕ(xt))}.

A simple example of OCO algorithm is Online (sub)Gradient Descent (OGD) that
uses the update mt+1 = ΠM(mt − ηtgt) where gt ∈ ∂lt(mt), ηt ∈ R+ is a learning rate
and ΠM is the Euclidean projection on M (i.e, ΠM(m0) = arg minm∈M∥m −m0∥2

2). If
ηt = Θ(1/

√
t) andM is a bounded set, OGD is known to achieve sublinear regret with a

O(
√
T ) upper bound [Zinkevich, 2003]. To aid understanding, we provide in the following

a sketch of the proof for the case where M is such that maxm,w∈M∥m− w∥2
2 = D2, and

ηt = 1√
t
. First, by the convexity of lt and the definition of subgradients (see Definition ??),

we have for any m ∈M:

RT (m) =
T∑
t=1

lt(mt)−
T∑
t=1

lt(m) ≤
T∑
t=1

g⊤
t (mt −m)

Moreover, for any t, we have: ∥mt−ηtgt−m∥2
2= ∥mt−m∥2

2−2ηtg⊤
t (mt−m)+η2

t ∥gt∥2
2.

Then, using ∥z−m∥2
2≥ ∥ΠM(z)−m∥2

2 for any z ∈ Rd,m ∈M (see for instance Proposition
2.11 in [Orabona, 2019]), we obtain:

g⊤
t (mt −m) ≤ 1

2ηt
(∥mt −m∥2

2 − ∥mt+1 −m∥2
2) + ηt

2 ∥gt∥
2
2 (6.2)
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Then, summing Equation 6.2 over t = 1, . . . , T and using Assumption 6.1, we have:

RT (m) ≤ 1
2η1
∥m1 −m∥2

2 −
1

2ηT
∥mT+1 −m∥2

2 + 1
2

T∑
t=2

(
1
ηt
− 1
ηt−1

)
∥mt −m∥2

2 + G2

2

T∑
t=1

ηt

Finally, using ∥mT+1−m∥2
2 ≥ 0, maxm,w∈M∥m−w∥2

2 = D2, and ηt = 1√
t
, we obtain:

RT (m) ≤ D2
( 1

2η1
+ 1

2

T∑
t=2

(
1
ηt
− 1
ηt−1

))
+ G2

2

T∑
t=1

ηt

≤ D2 1
2ηT

+ G2

2

T∑
t=1

ηt

≤ D2
√
T

2 + G2

2 (2
√
T − 1)

where in the last line we used ∑T
t=1

1√
t
≤ 2
√
T − 1 ([Zinkevich, 2003]). Despite its

simplicity, OGD achieves the lowest possible upper bound on the regret. Indeed, it is
known that we can exhibit a sequence of losses l1, . . . , lT such that RT ≥ GD

√
T

2 whatever
the algorithm (see [Orabona, 2019] (Theorem 5.1) or [Hazan et al., 2016] (Theorem 3.2)).

OGD falls under a more general family of algorithms that are the online mirror
descent (OMD) algorithms [Beck and Teboulle, 2003] characterized by the following model
update:

mt+1 = arg min
m∈M

{
g⊤
t m+ 1

ηt
Bψ(m,mt)

}
(6.3)

whereBψ is a Bregman divergence [Bregman, 1967], i.e., a function of the formBψ(m,m′) =
ψ(m)− ψ(m′)−∇ψ(m′)T (m−m′), where ψ is a differentiable and strictly convex func-
tion (see Definition 1.24). By the strict convexity of ψ, for a fix reference point m′ ∈M,
Bψ(m,m′) ≥ 0 for any m ∈ M, with equality if and only if m = m′. Therefore, Bψ

can be interpreted as a similarity measure, and Problem 6.3 amounts to minimizing a
linearized version of the loss around mt while staying close to mt, achieving a form of
exploration-exploitation trade-off.

For instance, by taking ψ(m) = 1
2∥m∥

2
2, i.e., Bψ(m,mt) = 1

2∥mt −m∥2
2, OMD boils

down to OGD as in this case Problem 6.3 reduces to:

mt+1 = arg min
m∈M

{
g⊤
t m+ 1

2ηt
∥mt −m∥2

2

}
(6.4)

= arg min
m∈M

{1
2∥mt − ηtgt −m∥2

2

}
= ΠM(mt − ηtgt)

In the general case, when ηt = Θ(1/
√
t) andM is a bounded set, OMD is also known
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to achieve a O(
√
T ) regret upper bound [Warmuth et al., 1997, Beck and Teboulle, 2003,

Cesa-Bianchi and Lugosi, 2006].

Remark 6.1 (online and stochastic learning). It is important to note that, in the online
learning literature, the aim is to design algorithm that guarantee a O(

√
T ) regret bound,

without making any assumptions about the sequence of losses received, which may be
stochastic, deterministic or even adversarial (arbitrarily chosen by an adversary). For
this reason, the learning process is commonly interpreted as a game in which the learner
picks a decision mt, and the adversary determines a loss lt(mt) [Cesa-Bianchi and Lugosi,
2006, Shalev-Shwartz, 2012]. Thus, this setting is more general than the related one of
stochastic learning [Robbins and Monro, 1951, Polyak and Juditsky, 1992, Bottou and
Cun, 2003, Bottou et al., 2018], where the learning problem is also addressed through
sequential processing of instances. In the latter setting, the losses are indeed assumed to
take the form lt(mt) = l(m⊤

t ϕ(xt), yt), where the stream of instances (xt, yt) is i.i.d. from
an unknown but fixed distribution. For a discussion on the links between both settings,
the interested reader may refer to Shalev-Shwartz [2012] (Chapter 5) and [Orabona, 2019]
(Chapter 3).

1.1.2 Online Learning with ℓ1-regularization

Let us now consider a ℓ1-regularized loss, i.e., for any t, and any m ∈M:

ft(m) = lt(m) + λ∥m∥1 (6.5)

where λ > 0 is a hyperparameter that controls the level of regularization. Note that
functions ft, t = 1, . . . , T are convex functions.

Including ℓ1-regularization in the loss functions requires special care, as applying
an OMD algorithm directly to ft would amount linearizing both lt and the ℓ1-norm, i.e.,
computing mt+1 via Equation 6.3 with gt ∈ ∂f(mt), thereby cancelling out the desired
sparsity effect of the ℓ1-regularization. Thus, OMD algorithms have been extended to
handle ℓ1-regularized losses or other composite loss functions of the form lt(m) + r(m),
where r is typically a regularization function [Langford et al., 2009, Duchi and Singer,
2009, Duchi et al., 2010].

For instance, the FOBOS algorithm [Duchi and Singer, 2009] is a variant of OGD
(see Equation 6.4) where the ℓ1-norm regularization is not linearized, i.e.:

mt+1 = arg min
m∈M

{
g⊤
t m+ λ∥m∥1 + 1

2ηt
∥mt −m∥2

2

}
(6.6)

Each step of FOBOS solves an ℓ1-regularized optimization problem, enabling the
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recovery of sparse models. Furthermore, this problem admits a closed-form solution when
M = Rd, which can derived using the notion of proximal operator, that we define below:

Definition 6.2 (proximal operator). The proximal operator of a proper and convex
function h : Rd → R ∪ {+∞} is defined as:

proxh(x) = arg min
z∈Rd

(1
2∥z − x∥

2
2 + h(z)

)
(6.7)

Then, when h(x) = λ∥x∥1, proxh admits the following analytical form (the proof
of this standard result is given for completeness in Lemma 2 of Appendix C):

proxλ∥·∥1(x) = sign(x) ∗ [|x| − λ]+ (6.8)

Therefore, using Equation 6.8, it can easily be checked that Problem 6.6 admits
the following closed-form solution when M = Rd:

mt+1 = sign(mt − ηtgt) ∗ [|mt − ηtgt| − ληt]+

However, FOBOS has shown difficulties in fully exploiting the ℓ1-regularization
and in particular provides models with high numbers of non-null coefficients [Xiao, 2009].
Nevertheless, another major family of online algorithms, called follow-the-regularized-
leader (FTRL) [Shalev-Shwartz, 2007, 2012], when combined with ℓ1-regularized losses, is
known to produce enhanced sparse models compared to OMD methods (such as FOBOS)
[Xiao, 2009, McMahan, 2011, Hoi et al., 2021]. The resulting algorithms appear under the
name regularized dual averaging (RDA)[Xiao, 2009, 2010]. FTRL and RDA are presented
in the following section.

1.1.3 Follow-the-regularized-leader (FTRL)

FTRL algorithms consist in taking mt+1 as the model that minimizes the average
loss received on the past rounds and some regularization function ψ :M→ R, i.e.,:

mt+1 = arg min
m∈M

{ t∑
τ=1

lτ (m) + 1
ηt
ψ(m)

}
(6.9)

Thus, contrarily to OMD that computes mt+1 based on mt and the loss received
at step t (see Problem 6.3), FTRL uses the whole history of received losses and computes
mt+1 as the model that, while remaining simple, would have perform best over the past
rounds (the leader). When ψ is closed and strongly convex (see Definition 1.26 and
1.25) and ηt = Θ(1/

√
t), such scheme is known to admit a O(

√
T ) regret bound [Shalev-
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Shwartz, 2007, Xiao, 2010, Shalev-Shwartz, 2012, Orabona, 2019]. The detailed result is
provided below:

Theorem 6.1. Let ψ : M → R be a closed and 1-strongly convex function, and such
that minm∈M ψ(m) = 0. Let ηt = γ√

t
and FD = {m ∈ M : ψ(m) ≤ D2} for some

D, γ ∈ R∗
+. Then, under Assumption 6.1, for any m ∈ FD:

RT (m) ≤ (D
2

γ
+ γG2)

√
T (6.10)

A proof can be found in [Xiao, 2010] (Corollary 2), and in [Orabona, 2019] (Corollary
7.9) for a factor ηt ahead of one time-step, i.e., ηt = γ√

t+1 , or in [Shalev-Shwartz, 2012]
(Theorem 2.11) for a non-time varying factor, i.e., ηt = η.

As it is, the FTRL update given by Equation 6.9, requires solving an optimization
problem at each iteration. However, similarly as in OMD, it can be alleviated by con-
sidering the linearized loss l̃t(m) = g⊤

t m, gt ∈ ∂lt(mt). Indeed, under Assumption 6.1, as
∂l̃t(mt) = {gt} ⊆ ∂lt(mt), losses l̃t naturally also satisfy Assumption 6.1 with the same
gradient bound G. Therefore, using Theorem 6.1 with l̃t(mt) and the definition of the
subgradients (see Definition 1.27), we have for any m ∈ FD:

T∑
t=1

(lt(mt)− lt(m)) ≤
T∑
t=1

g⊤
t (mt −m) =

T∑
t=1

(l̃t(mt)− l̃t(m)) ≤ (D
2

γ
+ γG2)

√
T

Therefore, considering lt or its linearized version l̃t is equivalent, and using l̃t in
Problem 6.9 typically gives closed-form solutions. For instance, when ψ(m) = 1

2∥m∥
2
2, it

yields the following update:

mt+1 = arg min
m∈M

{
t∑

τ=1
g⊤
t m+ 1

2ηt
∥m∥2

2

}
(6.11)

mt+1 = arg min
m∈M

{
ḡ⊤
t m+ 1

2ηtt
∥m∥2

2

}
(6.12)

mt+1 = arg min
m∈M

{
1

2ηtt
∥m− (−ηttḡt)∥2

2

}
(6.13)

= ΠM (−ηttḡt) (6.14)

1.1.4 Regularized Dual Averaging (RDA): FTRL with Composite Loss

FTRL with a composite loss of the form lt(m) + r(m) yields the following update:
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mt+1 = arg min
m∈M

{1
t

t∑
τ=1

lτ (m) + r(m) + 1
tηt
ψ(m)} (6.15)

where the objective function has been divided by t as in Equation 6.12. Such update
is known under the name regularized dual averaging (RDA) [Xiao, 2010] (a name that
comes from the optimization literature as RDA can be seen as an extension of the dual
averaging method [Nesterov, 2009]).

For r(m) = λ∥m∥1, RDA has been empirically shown to produce sparser models
compared to OMD methods like FOBOS [Xiao, 2009, McMahan, 2011, Hoi et al., 2021].
This is further supported by theoretical results that show that, while FOBOS does apply a
ℓ1-regularization at round t (see Equation 6.6), it amounts to using a linearized version of
the ℓ1-norm for all previous rounds (when written in a FTLR form) [McMahan, 2011]. In
contrast, the RDA update (Equation 6.15) involves applying an explicit ℓ1 regularization
to all past rounds.

The sparsity effect of this ℓ1-regularization can be preserved while exploiting the
benefit of loss linearization for computational efficiency by solely linearizing lt, i.e., using
l̃t(m). In this case, using Equation 6.8, it can easily be checked that Problem 6.15 admits
the following closed-form solution when r(m) = λ∥m∥1 and M = Rd:

mt+1 = −tηt
[
|ḡt| − λ

]
+
∗ sign(ḡt) (6.16)

Remark 6.2 (regret bound with composite loss). To obtain a regret bound, Theorem 6.1
can be applied to the partially linearized composite loss, i.e., l̃t(m)+λ∥m∥1. However, the
obtained bound now is of the form (D2

γ
+γ(G2 +λ2d))

√
T as it can easily be checked that

for any s ∈ ∂∥.∥1(mt), ∥s∥2
2 ≤ d. Several proposed regret analysis allow bypassing this

issue and provide a proof of a bound depending on G solely (see Xiao [2010] (Corollary
2) or Orabona [2019] (Section 7.8)), guaranteeing that for any m ∈ FD:

T∑
t=1

(l̃t(mt) + λ∥mt∥1)−
T∑
t=1

(l̃t(m) + λ∥m∥1) ≤ (D
2

γ
+ γG2)

√
T

In the following, we provide the explicit RDA algorithm for learning sparse Möbius
representation of the capacity. Additionally, the benefit of using an RDA algorithm over
FOBOS is illustrated with numerical experiments in Section 3.

1.2 A RDA Algorithm for Preference Learning

We now consider the online setting to learn a sparse Möbius vector m in model
Fm (see Equation 6.1) from preference examples. The preference examples are supposed
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to be received as a stream of pairwise preference examples (xt, x′
t) ∈ X 2 , where at

each round t, we consider without loss of generality that xt ≻ x′
t (strict preference)

or xt ∼ x′
t (indifference). In this setting, a natural convex loss function is lt(m) =

l(m⊤ϕ(xt),m⊤ϕ(x′
t)) where l is the pref-hinge loss (see Definition 1.28), i.e.:

lt(m) = [δ −m⊤(ϕ(xt)− ϕ(x′
t))]+ if t ∈ P (6.17)

= [|m⊤(ϕ(xt)− ϕ(x′
t))| − δ]+ if t ∈ I

where P (resp. I) denotes the index set of preference (resp. indifference) examples
and δ > 0 is a discrimination threshold used to separate preference from indifference
situations. Thus lt measures the violation of preference xt ≻ x′

t if t ∈ P or indifference
xt ∼ x′

t if t ∈ I. Here, to promote sparse solutions and thus obtain sparse Möbius
representations of capacities, we use the ℓ1-regularized version of the loss (see Equation
6.5).

By definition of lt (see Equation 6.17), it can easily be checked that, for any m ∈M,
the following vector belongs to ∂lt(m):

gt = (ϕ(x′
t)− ϕ(xt)) sign(lt(m)) if t ∈ P (6.18)

= (ϕ(x′
t)− ϕ(xt)) sign(lt(mt)m⊤(ϕ(x′

t)− ϕ(xt)) if t ∈ I

Remark that Assumption 6.1 holds for any continuous function ϕ and compact
(closed and bounded) set X , as for any gt ∈ ∂lt(m), we have ∥gt∥2

2 ≤ ∥ϕ(x′
t)− ϕ(xt)∥2

2 ≤
maxx,x′∈X 2∥ϕ(x)−ϕ(x′)∥2

2. Then, the online learning algorithm based on Equation (6.16)
for learning a compact Möbius representation of capacities inM = Rd (with d = 2n− 1)
is summarized in Algorithm 6.2 for ηt = γ√

t
where Equation 6.16 corresponds to line 8.

Algorithm 6.2: RDA for Preference Learning
Inputs: (γ, λ, T )

1 t← 1, m1 ← (0, . . . , 0), g0 ← 0
2 while t < T do
3 receive pairwise example (xt, x′

t)
4 compute loss gradient gt ∈ ∂lt(mt) according to Equation 6.18
5 # update average gradient
6 ḡt ← t−1

t
gt−1 + 1

t
gt

7 # update model
8 mt+1 ← −γ

√
t
[
|ḡt| − λ

]
+
∗ sign(ḡt)

9 t← t+ 1
Outputs: mT
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Associated batch learning problem It is important to note that the learning problem
with all instance in hands, i.e., a training set of pairwise comparisons {xt, x′

t}Tt=1 with
T = |P |+ |I|, corresponds to the following batch learning problem:

min
m∈M

1
T

(
∑
t∈P

ϵt +
∑
t∈I

(ϵ−
t + ϵ+

t )) + λ∥m∥1 (6.19)

m⊤(ϕ(xt)− ϕ(x′
t)) ≥ δ − ϵt, t ∈ P

m⊤(ϕ(xt)− ϕ(x′
t)) ≤ δ + ϵ+

t , t ∈ I

m⊤(ϕ(x′
t)− ϕ(xt)) ≤ δ + ϵ−

t , t ∈ I

ϵt, ϵ
+
t , ϵ

−
t ≥ 0, t = 1, . . . , T

where variables ϵt (resp. ϵ+
t ,ϵ+

t ) are variables modeling the error on preference (resp.
indifference) examples introduced to linearize loss lt (see Remark 2.2).

Thus, evaluating the performance of an online algorithm using the average regret
against the best fixed model (see Definition 6.1) amounts to comparing, in hindsight,
the average loss incurred by the online algorithm with the optimal value of Problem
6.19. Remark that this batch problem coincides with the learning problem studied in
Chapter 3 (see Problem 3.8), and that it can be solved with high precision using linear
programming up to a dozen of criteria. This solving method is used to compute the
average regret associated with Algorithm 6.2 in the numerical experiments of Section 3.

Also, it should be emphasized that the proposed online approach has the well-known
advantage of improving the scalability of the learning task, compared with batch problem
solving (6.19). Due to the efficient closed-form of Equation (6.16), Algorithm 6.2 applies
on instances involving more than 20 criteria (millions of possible interactions), as shown
by the results of numerical tests given in Section 3. Handling problems with such size
is also possible with the algorithm proposed in Chapter 3 (see Algorithm 3.2) in batch
mode, provided the database of preference examples is small (a few hundreds). Here,
the computational complexity of Algorithm 6.2 is in O(Td). It is still exponential in the
number of criteria since d = 2n − 1 but linear in T for bounded n. This is an advantage
in view of processing large-size databases.

In the next section, we address the challenge of learning a sparse and constrained
preference model.
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2 Online Sparse Learning with Constraints

2.1 Structural Constraints on the Capacity

A key feature of preference model Fm arises when the interaction function is chosen
as the functions ϕS(xS) = mini∈S{xi} or ϕS(xS) = ∏

i∈S xi (respectively yielding the Cho-
quet integral and the multilinear model), and m is associated to a monotonic capacity w,
i.e., such that for any T ⊆ S, w(S) ≤ w(T ) (⇔ ∑

S′⊆Sm(S ′) ≤ ∑T ′⊆T m(T )). Indeed, un-
der these conditions, Fm proves to be monotonic, i.e., ∀i ∈ N, xi ≥ x′

i ⇒ Fm(x) ≥ Fm(x′)
(see [Grabisch, 2016a], Chapter 4), making the preferences induced by Fm consistent with
weak Pareto dominance. Thus, when learning the capacity from preference examples,
whether in the Choquet integral, in the multilinear model, or more generally in the Fm
model, the question arises as to how to obtain a capacity that verifies this monotonicity
property.

Let us first remark that preference examples may partly contribute to enforce
monotonicity. For instance, in the case of Choquet and multilinear model we have
Fm(1S, 0−S) = w(S) for all S ⊆ N where (1S, 0−S) is the vector of Rn whose compo-
nents indexed in S equal 1, the other being equal to 0. Hence, for any pair T, S of subsets
such that T ⊆ S ⊆ N , a preference example like (1S, 0−S) ≿ (1T , 0−T ) is equivalent to
w(S) ≥ w(T ). Thus a capacity-based decision model that well fits such preference exam-
ples should nearly satisfy monotonicity on the pairs present in the database. However,
in practice, preference are collected from past experiences and we cannot expect that
all relevant (S, T ) pairs are present in the preference database. Multiple violations of
monotonicity are still possible. Another approach to enforce monotonicity is to explicitly
include all monotonicity constraints in the learning process. Note that the constraints
expressed using Möbius masses reduces as follows: ∑T⊆S,T∋im(T ) ≥ 0, ∀i ∈ S,∀S ⊆ N .
This approach was used in the batch setting in Chapter 2 (see Problem ??) and combined
with constraints generation in Chapter 3 (see Algorithm 3.4). In this section, this option
is investigated in the online setting.

Beyond monotonicity, other structural constraints on the capacity might be con-
sidered, and in particular supermodularity. A capacity w is said to be supermodular (or
convex) if w(S ∪ T ) + w(S ∩ T ) ≥ w(S) + w(T ) for all S, T ⊆ N . This condition is
used in the Choquet integral to support the emergence of fair solutions in choices [Lesca
and Perny, 2010]. More precisely, if the decision maker is indifferent between q solutions
x1, . . . , xq, with a supermodular w it is guaranteed that a vector obtained by convex
combination of x1, . . . , xq will be preferred to any of the xi’s [Chateauneuf and Tallon,
2002a]. Thus, softening the variations of components in vectors xi, i = 1, . . . , q makes the

209



Chapter 6. Online Learning of Capacity-based Preference Models

decision maker better off. This condition promotes alternatives having balanced profiles.
It is illustrated on a toy example below.

Example 6.1. If the decision maker is indifferent between (1, 0) and (0, 1), a solution
like (1

2 ,
1
2) will be preferred to the other two according to the Choquet model, provided that

the capacity is supermodular. We have indeed, if m is the Möbius transformed of the
capacity w, Fm(1, 0) = w({1}), Fm(0, 1) = w({2}) and w({1}) = w({2}) since (1, 0) and
(0, 1) are indifferent. Hence Fm(1

2 ,
1
2) = 1

2w({1, 2}) ≥ 1
2(w({1}) + w({2})) by supermod-

ularity of w. Therefore Fm(1
2 ,

1
2) ≥ w({1}) = Fm(1, 0) = Fm(0, 1).

Obviously, supermodularity can also be expressed using Möbius masses, and both
supermodularity and monotonicity constraints consist in linear constraints in m. Let c
denote the number of constraints and C ∈ Rc×d the matrix encoding the linear constraints
on the capacity such as monotonicity and/or supermodularity constraints, i.e., such that
the set of admissible models is M = {m : Cm ≤ 0}.

Example 6.2. When N = {1, 2} monotonicity and supermodularity are enforced by the
system Cm ≤ 0 with:

C =



−1 0 0

0 −1 0

0 −1 −1

−1 0 −1

0 0 −1


and m =


m1

m2

m12



Monotonicity is guaranteed by the four first lines, and supermodularity by the fifth.

The size of matrix C is exponential in n. However, C gets sparser as n increases which
allows us to resort to specialized libraries (e.g., scipy.sparse) for efficient matrix products
in learning algorithms.

In its current form, Algorithm 6.2 does not enforce monotonicity constraints on
the capacity. As suggested previously, if the DM preferences are monotonic w.r.t. Pareto
dominance, we may observe in practice that the algorithm progressively captures the data
monotonicity as new preference examples arrive (this is confirmed by our numerical tests,
see Section 3). However, even though the average monotonicity violation progressively
vanishes, high-amplitude and recurrent violations can occur, especially at the beginning of
the online learning process. For this reason, in the next section, we propose an extension
of Algorithm 6.2 that explicitly includes monotonicity constraints and possibly other
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constraints such as supermodularity constraints.

2.2 A RDA-ADMM Algorithm

2.2.1 Online Learning with Constraints

A natural way to include the monotonicity and/or modularity constraints in Al-
gorithm 6.2 is to simply consider M = {m : Cm ≤ 0}. However, in this case the
RDA update given by Equation 6.15 with partially linearized loss l̃t(m) + ∥m∥1 and
ψ(m) = 1

2∥m∥
2
2 no longer admits a closed-form solution (in contrast to the unconstrained

case in which the closed-form solution is given by Equation 6.16). Therefore, including
constraints requires running a potentially costly optimization procedure at each update.

Another option is to not enforce the constraints at every step but use the concept
of long-term constraints and guarantee a bound on the cumulative constraint violation,
similarly to the regret bound [Mahdavi et al., 2012, Wang and Banerjee, 2012, Jenatton
et al., 2016, Yu and Neely, 2020]. Among the long-term constraints methods, online
alternate direction method of multiplier (ADMM) [Wang and Banerjee, 2012, Suzuki,
2013, Ouyang et al., 2013, Suzuki, 2014, Hosseini et al., 2014, Liu et al., 2018] combine
online algorithms with ADMM, a well-known iterative optimization method for batch
problems that uses splitting variables to reduce the optimization problem into easier
sub-problems at each iteration [Boyd et al., 2011].

Online ADMM algorithms have been proposed to extend both OMD [Wang and
Banerjee, 2012, Ouyang et al., 2013, Suzuki, 2013, Liu et al., 2018] and FTRL (RDA)
[Suzuki, 2013, Hosseini et al., 2014] to include linear constraints Am ≤ b or structured
regularization, i.e., regularization of the form r(Am). Before exploring these extensions,
we first introduce the ADMM optimization method.

Remark 6.3 (constraints without ℓ1-regularization). It is important to recall that without
the ℓ1-regularization, the RDA update given by Equation 6.15 with linearized loss l̃t(m)
and ψ(m) = 1

2∥m∥
2
2 reduces to mt+1 = ΠM(−ηttḡt) as given by Equation ??. Similarly,

without ℓ1-regularization, the OGD update is defined by mt+1 = ΠM(mt−ηtgt) (given in
page 201). While appearing simple, these updates still involve potentially highly costly
projection steps to take back the updated model into the admissible set M at each
iteration. For this reason, projection-free online algorithms have been developed [Hazan
and Kale, 2012, Chen et al., 2018, Hazan and Minasyan, 2020]. For instance, an algorithm
[Hazan and Kale, 2012] based on the Frank-Wolfe method [Frank et al., 1956] replaces
the projection step with linear programming (LP). However, this approach is not very
efficient to achieve monotonicity, as LP on the set M = {m : Cm ≤ 0} is not known to
reduce to a computationally simple problem.
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2.2.2 The Alternate Direction Method of Multiplier (ADMM)

ADMM [Glowinski and Marroco, 1975, Gabay and Mercier, 1976, Boyd et al., 2011,
Nishihara et al., 2015] is a widely used optimization method for solving large-scale or
distributed optimization problems [Forero et al., 2010, Bioucas-Dias and Figueiredo, 2010,
Wang et al., 2019, Liu et al., 2020], due to its ability to decompose complex problems into
simpler subproblems. Below, we first introduce its precursor, the method of multipliers
[Powell, 1969].

The Method of Multipliers Let us consider the following optimization problem:

min
x
f(x) (6.20)

Dx = b

where f : Rd → R is convex and b ∈ Rp, D ∈ Rp×d, for any p, d ∈ N. We now define the
augmented Lagrangian as follows:

Lρ(x, µ) = f(x)− µT (Dx− b) + (ρ/2)∥Dx− b∥2
2 (6.21)

where ρ ∈ R+ and (x, µ) ∈ Rd × Rp.
Remark that Lρ corresponds to the (standard) Lagrangian (see Section 2.2.1 in

Chapter 3) of the problem of minimizing f(x) + ρ
2∥Dx− b∥

2
2 under the constraint Dx− b

(which is equivalent to Problem 6.20). The dual function of the latter problem expresses
as g(µ) = minx Lρ(x, µ), which can be shown to be differentiable under mild condition
[Boyd et al., 2011]. In this case, its gradient is ∇g(µ) = Lρ(x∗, µ) = Dx∗ − b where x∗ ∈
arg minLρ(x∗, µ). Then, the Method of Multipliers consists in solving the optimization
problem with gradient ascent using ρ as the learning rate, i.e.,:

µk+1 = µk + ρ∇g(µk)⇔

x
k+1 = arg minx Lρ

(
x, µk

)
µk+1 = µk + ρ

(
Dxk+1 − b

)
A detailed convergence analysis of this iterative optimization procedure can be

found in [Bertsekas, 1982] (Chapter 2). This scheme allows replacing a constrained op-
timization problem with a sequence of unconstrained optimization problems. However,
the term ∥Dx− b∥2

2 in Lρ introduces non-separability, preventing us from exploiting the
potential separability of Problem 6.20 (which occurs when f decomposes additively onto
a partition of the components of x). The ADMM method, that we introduce below,
allows us to bypass this issue.
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The Alternating Direction Method of Multipliers (ADMM) For simplicity, let
us consider a two-block variable vector x = (m, z) and an objective function that ad-
ditively decomposes onto this variable separation, i.e., f(m) = h(m) + u(z). Then, if
D = (A,B), Problem 6.20 can be written as follows:

min
m,z

h(m) + u(z) (6.22)

Am+Bz = b

Then, the ADMM consists of the following iterative optimization procedure:

mk+1 = arg min
m

Lρ
(
m, zk, µk

)
(6.23)

zk+1 = arg min
z
Lρ
(
mk+1, z, µk

)
(6.24)

µk+1 = µk + ρ
(
Amk+1 +Bzk+1 − b

)
(6.25)

where Lρ is the augmented Lagrangian of Problem 6.22.
Unlike the multiplier method, the augmented Lagrangian is now alternatively min-

imizated with respect to m and z at each iteration (thus justifying the name of the
method). This results in an iterative process where each sub-problem may be simpler
than a joint minimization of the augmented Lagragian. Under the light assumption that
Problem 6.22 admits a solution, and h, u are closed proper convex functions (see Defini-
tions 1.24 and 1.26), the ADMM is known to have a O(1/k) convergence rate1 [He and
Yuan, 2012, Wang and Banerjee, 2012]. For a more in-depth introduction to ADMM, the
interested reader may refer to Boyd et al. [2011].

In the following, we present ADMM in the online setting, using the RDA algorithm
(see Section 1.1.4).

2.2.3 RDA-ADMM

Let us now consider RDA (see Problem 6.15) with r(m) = u(Am−b) with g : Rp →
R, i.e.,:

mt+1 = arg min
m∈M

{1
t

t∑
τ=1

lτ (m) + u(Am− b) + 1
tηt
ψ(m)} (6.26)

Such update includes the following two interesting sub-cases:

(1) for b = 0 and u(z) = λ∥z∥1, Problem 6.27 reduces to a RDA update with structured
ℓ1-regularization, i.e., r(m) = λ∥Am∥1, a penalization used in the generalized lasso

1i.e., there exists C ∈ R+ such that h(mk) + u(zk)− (h(m∗) + u(x∗)) ≤ C
k for any k, where (m∗, z∗)

is the optimal solution of Problem 6.22.
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[Roth, 2004, Ali and Tibshirani, 2019]. More generally, structured regularization
of the form r(Am) can be used to perform group regularization [Qin and Goldfarb,
2012, Suzuki, 2013].

(2) for u(z) = I−(z) where I− is the indicator function of Rp
−, i.e., I−(z) = 0 if z ∈ Rp

−

and +∞ otherwise, Problem 6.27 reduces to a FTRL update with linear constraints
Am ≤ b.

In any case, introducing an auxiliary variable z = Am− b ∈ Z allows Problem 6.26
to be reformulated as follows:

(mt+1, zt+1) ∈ arg min
m∈M,Z

ht(m) + u(z) with ht(m) = 1
t

t∑
τ=1

lτ (m) + 1
tηt
ψ(m) (6.27)

z = Am− b

Then, at each round t, the update given by Problem 6.27 is a standard ADMM
problem with B = −I (see Problem 6.22), and thus can be solved using ADMM. How-
ever, we end up with a two-loop online learning algorithm: for each update, an iterative
optimization procedure given by Equations 6.23-6.24 has to be launched. On the other
hand, it is known that under some assumptions [Suzuki, 2013], making a single pass of
the ADMM iterative procedure on Problem 6.27 allows guaranteeing both a sublinear
regret and a sublinear constraint violation. More precisely, if Lt,ρ denotes the augmented
Lagrangian of Problem 6.27 for any t, the following iterative procedure has been proposed
as an RDA-ADMM algorithm [Suzuki, 2013]:

mt+1 = arg min
m∈M

Lt,ρ(m, z̄t, µ̄t) (6.28)

zt+1 = arg min
z∈Z

Lt,ρ(mt+1, z, µt) (6.29)

µt+1 = µt − ρ(Amt+1 − b− zt+1) (6.30)

Remark that Equations 6.28-6.30 correspond to a single pass of the ADMM proce-
dure given by Equation 6.23-6.24 applied to Problem 6.27, where in Equation (6.28), z
and µ are set to their average values over the past rounds, allowing to keep memory of the
past constraint violations [Suzuki, 2013]. The associated regret and constraint violation
bound guarantee is provided below.

Theorem 6.2. (adapted from [Suzuki, 2013]; see Theorem 7 in the paper’s appendix)
Under Assumption 6.1 and the following additional assumptions:

(i) M and Z are compact convex with radius D ∈ R+, i.e., such that maxm,m′∈M∥m−
m′∥2 ≤ D and maxz,z′∈Z∥z − z′∥2 ≤ D,
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(ii) ηt = γ√
t

and ψ(m) = ψt(m) = 1
2(∥m∥2

2− ρηtt∥A(m−mt)∥2
2), where γ ∈ R+ is taken

so that ψt(m) is a strongly convex regularization for any t,

(iii) u is subdifferentiable and of bounded subgradients, i.e., there exists L ∈ R+ such
that, ∥s∥2 ≤ L for any s ∈ ∂u(z), z ∈ Z,

the update given by Equations 6.28-6.30 yields the following bound:

T∑
t=1

(lt(mt) + u(zt))−
T∑
t=1

(lt(m) + u(z)) + ρ

2

T∑
t=1
∥Amt+1 +Bzt+1− b∥2

2 ≤ (D
2

γ
+G2)

√
T +K

for any m, z ∈M×Z, where K is a constant depending on D,G,L,A and η1.

Remark 6.4 (Online ADMM with OMD). Similar analysis are also known for the OMD
procedure (see Equation 6.3) [Wang and Banerjee, 2012, Suzuki, 2013, Ouyang et al.,
2013, Liu et al., 2018]. The aforementioned references constitutes a more extensive body
of literature than that on RDA-ADMM, where the only analysis available are, to the
best of our knowledge, that of [Suzuki, 2013] and [Hosseini et al., 2014] in the distributed
setting.

2.2.4 A RDA-ADMM Algorithm for Sparse and Constrained Online
Learning

In order to allow for both a sparse and constrained learning, let us now consider the
RDA-ADMM update given by Problem 6.26 with a ℓ1-regularized loss and u(z) = I−(z)
(setting (2)), i.e.,:

mt+1, zt+1 = arg min
m∈M,z∈Z

{1
t

t∑
τ=1

lτ (m) + λ∥m∥1 + I−(z) + 1
tηt
ψt(m)

}
(6.31)

s.t. z = Am− b

In the following proposition, we show that using the linearized loss l̃t(m) = m⊤gt,
ψt(m) = 1

2(∥m∥2
2 − ρηtt∥A(m −mt)∥2

2), and Lρ,t as the augmented Lagrangian of Prob-
lem 6.31, the RDA-ADMM procedure given by Equations (6.28-6.30) admits closed-form
solutions.

Proposition 6.1. Equations (6.28-6.30) where Lt,ρ is the augmented Lagrangian of
Problem 6.31 with l̃t(m) = m⊤gt, ψt(m) = 1

2(∥m∥2
2 − ρηtt∥A(m−mt)∥2

2), M = Rd,Z =
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Rp, admit the following closed-form solutions:

mt+1 = −ηtt
[
|ḡµt | − λ

]
+
∗ sign(ḡµt ) (6.32)

zt+1 = −
[
µt
ρ
− (Amt+1 − b)

]
+

(6.33)

µt+1 = µt − ρ(Amt+1 − zt+1 − b) (6.34)

with ḡµt = ḡt − A⊤(µ̄t − ρ(Am̄t − z̄t − b)).

Proof. First we give a simplified expression of Lt,ρ:

Lt,ρ(m, z, µ) = ḡ⊤
t m+ λ∥m∥1 + 1

2ηtt
∥m∥2

2 + I−(z)− µ⊤(Am− z − b) + ρ

2∥Am− z − b∥
2
2

− ρ

2∥A(m− m̄t)∥2
2

= ḡ⊤
t m+ λ∥m∥1 + 1

2ηtt
∥m∥2

2 + I−(z)− µ⊤(Am− z − b) + ρ(Am̄t − z − b)⊤Am

+ ρ

2(∥z + b∥2
2 − ∥Am̄t∥2

2)

Therefore, we obtain the following simplified update of mt (Equation 6.28) by delet-
ing the terms in Lt,ρ that do not depend on variable m:

mt+1 = arg min
m

Lt,ρ(m, z̄t, µ̄t) (6.35)

= arg min
m

ḡ⊤
t m+ λ∥m∥1 + 1

2ηtt
∥m∥2

2 − (µ̄t − ρ(Am̄t − z̄t − b))⊤Am

= arg min
m

ḡµt
⊤m+ λ∥m∥1 + 1

2ηtt
∥m∥2

2

= arg min
m

1
2∥m+ ḡµt ηtt∥2

2 + ληtt∥m∥1

= proxληtt∥·∥1(−ḡµt ηtt) (6.36)

with ḡµt = ḡt − A⊤(µ̄t − ρ(Am̄t − z̄t − b)). Therefore, using Equation 6.8, we obtain:

mt+1 = −ηtt sign(ḡµt )
[
|ḡµt | − λ

]
+

Now, we give the closed-form solution of the update of zt (Equation 6.29). By
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deleting the terms that do not depend on variable z in Lt,ρ, Equation 6.29 boils down to:

zt+1 = arg min
z

Lt,ρ(mt+1, z, µt)

= arg min
z

zTµt + ρ

2∥Amt+1 − z − b∥2
2 + I−(z)

= arg min
z

ρ

2∥Amt+1 − z − b−
µt
ρ
∥2

2 + I−(z)

= proxI−(Amt+1 − b−
µt
ρ

)

= −
[
µt
ρ
− (Amt+1 − b)

]
+

where we used Lemma 3 of Appendix C in the last line. Finally, the update of µt (Equation
6.30) is already given analytically.

It is important to note that the inclusion of a term ∥A(m − mt)∥2
2 in ψt, as in

Theorem 6.2, is a standard linearization trick in ADMM methods [Deng and Yin, 2016,
Wang and Banerjee, 2012, Suzuki, 2013]. It indeed allows bypassing the non-separability
of the optimization problem given by equation (6.28), induced by the term ρ

2∥Am−z−b∥
2
2.

Such a linearization is sometimes referred to as the split inexact Uzawa method [He and
Yuan, 2012, Zhang et al., 2011].

An online sparse and constrained preference learning algorithm Then, by tak-
ing A = C where C is the matrix encoding monotonicity/supermodularity constraints as
in Example 6.2, b = 0 and gt as the subgradients of the pref hinge loss (see Equation
6.18), exploiting Proposition 6.1, we obtain an online algorithm for learning sparse and
constrained Möbius vector in model Fm. The algorithm is explicitly given in Algorithm
6.3 for ηt = γ√

t
, where Equations 6.32-6.34 corresponds to line 9-11.

The benefit of Algorithm 6.3 for retrieving monotonic/supermodular capacity is
illustrated in the next section with numerical experiments. While the algorithm performs
well in practice, a regret analysis remains to be established. This question is addressed
in a preliminary manner in the following paragraph.

Regret and constraint violation bound analysis The update given by Equation
6.31 does not fall within the scope of Theorem 6.2 for several reasons.

(a) assumption (ii) is incompatible with the efficient update formulas provided in
Proposition 6.1, which are valid for M = Rd and Z = Rp. A possible option is
to derive a regret analysis using a lighter assumption—for instance, solely bound-
ing the distance between the initial model and the fixed model, as in [Wang and
Banerjee, 2012] (i.e., ∥m1 −m∥2 ≤ D and ∥z1 − z∥2 ≤ D).
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Algorithm 6.3: RDA-ADMM for constrained capacity learning
Inputs: (γ, λ, ρ, T )

1 t← 1, m1, µ1, z1 ← (0, . . . , 0)
2 while t < T do
3 receive pairwise example (xt, x′

t)
4 compute loss gradient gt ∈ ∂lt(mt) according to Equation 6.18
5 # update average gradient
6 ḡt ← t−1

t
gt−1 + 1

t
gt

7 ḡµt ← ḡt − C⊤(µ̄t − ρ(Cm̄t − z̄t))
8 # update model
9 mt+1 ← −γ

√
t
[
|ḡµt | − λ

]
+
∗ sign(ḡµt )

10 zt+1 ← −
[
µt

ρ
− Cmt+1

]
+

11 µt+1 ← µt − ρ(Cmt+1 − zt+1)
12 t← t+ 1

Outputs: mT

(b) assumption (iii) is too restrictive as it does not allow taking u = I−. Indeed, since
for any z ∈ dom u (i.e., z ≤ 0), it can easily be checked from the subgradient
definition (see Definition 1.27) that:

∂u(z) = {(s1, . . . , sp) ∈ Rp
+ : si = 0 whenever zi < 0}

∂u(z) corresponds to the normal cone of the negative orthant at point z, which is
represented for p = 2 in Figure 6.1 for the sake of illustration. Therefore, ∂u(z) is
unbounded, preventing compliance with assumption (iii). The fact that neither the
batch ADMM analysis [He and Yuan, 2012, Wang and Banerjee, 2012] nor the online
ADMM analysis for the OMD procedure [Wang and Banerjee, 2012] necessitates
such an assumption suggests that it could potentially be omitted.

(c) as the motivation for Theorem 6.2 is the setting (1) of RDA-ADMM (see Section
2.2.3), it is thought of for a ℓ1-regularization carried by the u function, and the
case of a composite ℓ1-regularized loss lt as in Problem 6.31 is not considered.
Therefore, the previous points set aside, a direct application of Theorem 6.2 would
yield a regret bound in (G+λd)

√
T , as explained in Remark 6.2. Then, an adapted

analysis is required, as provided in Xiao [2010] (Corollary 2) or Orabona [2019]
(Section 7.8)) for FTRL with composite loss.
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z1

z2

R2
−

Figure 6.1: R2
− normal cone at (−1, 0) (red), (0,−1) (blue) and (0, 0) (orange)

3 Numerical Tests

In this section, we conduct numerical tests using synthetic preference data We
generate preference data by randomly drawing sparse (with few non-null coefficients)
normalized Möbius vector m associated with monotonic capacities and pairs of alterna-
tives xt, x′

t ∈ [0, 1]n. Then, after comparison of the perturbed overall values m⊤ϕ(xt) + ϵx

and m⊤ϕ(x′
t) + ϵy (where ϵx is a centered Gaussian noise with standard error σ = 0.03),

we obtain preference or indifference examples. In all the experiments, we test our al-
gorithms on the learning of Choquet Integral, and thus we generate data using ϕ(xt) =
(mini∈S{xi})S⊆N but the tests could be presented with the multilinear model with similar
results.

In the first experiment, we show the practical efficiency of Algorithm 6.2 compared
to batch problem (6.19) solved with linear programming (denoted Batch(LP)). The ℓ1-
regularization parameter λ is set to 0.01 for both methods and for Algorithm 6.2, γ is
set to 10−3. In Table 6.2 and 6.3 we compare the average accuracy and training times
over 20 simulations of both methods for a growing number of criteria n. The accuracy
is computed as the average proportion of correctly predicted preferences within a test
set containing 500 preference examples. The number of preference examples T increases
linearly with n. We observe that for 10 and 15 criteria, Algorithm 6.2 reaches accuracy
values close to the one obtained with the batch solution (at most 5% lower) while having
significantly lower training times. Finally, for 20 criteria (millions of possible criteria
interactions), it provides a solution in around 1 minute that approximately reaches 80%
of accuracy while no solution can be obtained in batch using linear programming.

In the second experiment, we first compare Algorithm 6.2 and Algorithm 6.3 in
the retrieval of monotonic capacities. The number of criteria is set to n = 10 and
the total number of preference examples is set to T = 1000. Preference examples
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(n, T ) (10, 500) (15, 750) (20, 1000)

Batch (LP) 0.92± 0.03 0.89± 0.03 –
Algo 1 0.88± 0.03 0.84± 0.03 0.79± 0.03

Table 6.2: Average accuracy over 20 simulations.

(n, T ) (10, 500) (15, 750) (20, 1000)

Batch (LP) 1.94± 0.21 246.8± 20.4 –
Algo 1 0.04± 0.01 0.7± 0.1 66.7± 1.9

Table 6.3: Average training times (sec.) over 20 simulations.

Figure 6.2: Average constraint violation w.r.t. the number of preference examples t.

Figure 6.3: Average regret w.r.t. the number of preference examples t.

are generated as in the previous experiment; hyper-parameters λ and γ are unchanged
and ρ = 1 for Algorithm 6.3. Figure 6.2 represents the average monotonicity viola-
tion computed as 1

t

∑t
τ=1∥[Cmτ ]+∥2

2 where C is the matrix encoding the monotonicity
constraints. We observe that Algorithm 6.2 highly violates monotonicity constraints
before t = 200 examples while we obtain a nearly null average violation for Algo-
rithm 6.3 at any t. Remark that Algorithm 6.2 progressively captures monotonicity
as it receives preference examples. In Figure 6.3, we show the average regret 1

t
Rt =

1
t

∑t
τ=1(lτ (mτ ) + λ∥mτ∥1) −minm∈M

1
t

∑t
τ=1(lτ (m) + λ∥m∥1) w.r.t. the number of pref-
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Figure 6.4: Accuracy w.r.t. the number of preference examples t.

Figure 6.5: Number of non-null coefficients w.r.t. the number of preference examples t.

Figure 6.6: Training times (sec.) w.r.t. the number of preference examples t.

erence examples t. The optimal value minm∈M
1
t

∑t
τ=1(lτ (m) + λ∥m∥1) is computed with

linear programming. We observe that both algorithms provide sequences of learned mod-
els mt with vanishing average regrets.

Then, we show the performances of both Algorithms 6.2 and 6.3 in terms of accuracy
and number of non-null coefficients respectively in Figure 6.4 and 6.5. We compare their
performances with the Batch(LP) method and with the FOBOS algorithm implemented
using the loss lt and a learning rate ηt = γ/

√
t with γ set at the recommended value in

[Duchi and Singer, 2009]. We observe that FOBOS suffers from instability and produces
less compact models. In contrast, Algorithms 6.2 and 6.3 quickly reduce the number of
non-null coefficients to some dozens. Concerning accuracy, we observe that Algorithm
6.3 achieves the same performance as Algorithm 6.2 while providing a better control of
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motonicity. The accuracy of both Algorithms 6.2 and 6.3 are slightly below the one
obtained with Batch(LP). However, the associated training time curves presented in
Figure 6.6 reveal the efficiency of the online algorithms compared to batch (LP). In
particular Algorithm 6.2 achieves these results in a near null training time. Algorithm
6.3 achieves intermediate times between Algorithm 6.2 and Batch(LP).

Figure 6.7: Average constraint violation w.r.t. the number of preference examples t.

Figure 6.8: Average regret w.r.t. the number of preference examples t.

In the third experiment, we assess the benefit of using Algorithm 6.3 to learn
both monotonic and supermodular capacities. More precisely, we compare the average
violation of constraints for both Algorithms 6.2 and 6.3 in Figure 6.7 and the average
regret in Figure 6.8. The advantage of Algorithm 6.3 in terms of constraint satisfaction
is also clear when supermodularity is required in addition to monotonicity.

4 Conclusion

We have proposed online algorithms to efficiently learn the capacity in a large class
of non-linear aggregation functions (but linear in the capacity), including the well-known
Choquet and multilinear models. These algorithms not only allow a decision model to
be adapted to a stream of preference examples, but can also be used in place of batch
learning methods, with an advantage in terms of scalability confirmed by our tests. We
have also addressed the inclusion of normative constraints restricting the set of admissible
capacities in the online learning process.
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A direct follow-up to this work would be to derive a regret analysis for Algo-
rithm 6.3. On the experimental side, one could assess the practical ability of the proposed
algorithms to adapt to time-varying preferences. Furthermore, a promising long-term di-
rection for this work would be to investigate the potential benefit of active selection of the
next example in this online process, while maintaining the computational efficiency of the
model update at each iteration, thus achieving a computationally efficient active learn-
ing [Awasthi et al., 2015, Zhang, 2018, Zhang et al., 2020]. Also, further contributions
could involve finding equivalents of the proposed approach for models beyond the class
represented by the Fm model. Other aggregation functions based on different algebraic
operations can indeed be used to combine capacities and values. For example, Sugeno’s
integral (see Definition 1.17) uses (max,min) operations instead of (+,×) [Sugeno, 1977].
The main challenge in going beyond Fm will then be to overcome the loss of linearity of
the model with respect to the capacity and its Möbius inverse m.
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Synthesis

The objective of this thesis was to provide learning methods to obtain representa-
tions of preferences that are:

• structured through to the use of axiomatically grounded models from decision the-
ory, which ensure a certain degree of consistency and rationality in preferences,

• and expressive enough to capture complex and diverse behavior, through algorith-
mic tools from machine learning and optimization enabling the full but controlled
exploitation of the descriptive richness of the decision-theoretic models.

To this end, we first introduced in Chapter 1 the preference models studied in this
thesis, i.e., utility functions that allow for interactions between viewpoints, as well as the
fundamentals of supervised learning and the optimization techniques used to solve the
learning problems. We then presented several contributions related to the learning of mul-
tiple utility models in various contexts: from pre-collected datasets of examples (passive
learning), from the answers to carefully selected queries (preference elicitation or active
learning), or from streams of preference examples (online learning). The contributions
are summarized below according to the utility model considered.

The Choquet integral of marginal utilities (CIU) In Chapter 2, we addressed the
learning of CIU, a central model in decision theory, which involves an initial challenge:
disentangling the marginal utility functions from the capacity weights, when neither is
directly observable. Hence, we proposed a standard-sequence-based method that uses
carefully selected queries to extract information on marginal utilities taking the form of
a set of linear constraints on the latter, which are then used to fit spline functions. More
robust to response errors than the classical standard-sequence methods initially proposed
for eliciting the RDU [Quiggin, 2012] or CPT [Kahneman and Tversky, 1979] model, they
offer the additional benefit of being valid for the bipolar Choquet integral (including CIU).
The second challenge concerns the identification of the capacity, defined by an exponen-

225



Conclusion

tial number of weights (in n the number of viewpoints), and thus whose flexibility must
be properly controlled to ensure that the model fits the data well, while generalizing well
to new examples and remaining easy to interpret. Rather than using standard approaches
that restrict the flexibility of the capacity a priori (e.g., using k-additivity or predefined
hierarchical structures) and may drastically limit the expressiveness of CIU, we proposed
learning a sparse representation of the capacity using sparsity-inducing regularizations.
More precisely, our approach employs the Möbius transform of the capacity, chosen for its
ability to yield sparse capacity representations, and identify the Möbius transform mini-
mizing both the error on the examples and the ℓ1-norm (possibly weighted). Experiments
on synthetic and real-world datasets show that, by tuning the regularization parameter,
our method achieves better trade-offs between model simplicity and generalization per-
formance compared to approaches based on structural restrictions like k-additivity.

Capacity-based preference models The learning problem considered in Chapter 2,
which aims to find sparse Möbius representations of the capacity can be solved with high
precision using linear programming but becomes intractable when n exceeds a dozen due
to the exponential growth in n of the number of variables. Thus, Chapter 3 introduces a
method based on the IRLS (iteratively reweighted least squares) paradigm, suitable for
learning a large class of capacity-based preference models including CI and the multilinear
utility. More precisely, the proposed approach reformulates the problem into a sequence of
least squares problems, which admit a compact dual formulation akin to that of support
vector machines — a quadratic program whose number of parameters and constraints
is linear in the number of examples and independent of n. Experiments on synthetic
data show that it allows approximately solving the learning problem for n exceeding 20,
i.e., for over a million possible interactions, and hundreds of preference examples. More-
over, experiments on real-world data, conducted in collaboration with domain experts,
demonstrated that the algorithm is able to uncover meaningful interactions.

In Chapter 6, the learning of capacity-based preference models is addressed in the
online setting, where preference examples are revealed sequentially. In particular, we
adapt the RDA (regularized dual averaging) online learning algorithm to the learning
of sparse Möbius representations, which consists in identifying, upon the arrival of each
new example, the vector that minimizes the cumulative error on the examples observed
so far, along with an ℓ1 regularization term. Using a linearization of the error term that
preserves the algorithm’s regret guarantees, the problem solved at each iteration can be
shown to admit a closed-form solution. As our experiments show, this allows for learning
capacities with n = 20 and 1,000 examples in about one second. Additionally, building
on ADMM (alternating direction method of multipliers), we proposed a variant of RDA
that incorporates long-term enforcement of constraints on capacity such as monotonicity
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or supermodularity. Experimental results show that this method allows avoiding large
constraint violations along the learning process.

Decision-focused learning with general aggregation functions In Chapter 5, we
addressed the multi-criteria choice problem, in interaction with the DM. For this problem,
a popular strategy is the min-max regret approach that involves querying the DM and
progressively narrowing the set of admissible parameter values based on her answers,
until an alternative emerges as necessarily optimal. Although efficient in minimizing the
number of queries, this type of approach is inherently intolerant to errors in the DM’s
answers and may not provide a model that is a good representation of her preferences.
Hence, we proposed a hybrid algorithm that uses a disagreement-based active learning
principle to more safely narrow down the set of admissible parameter values (limiting the
possibility of excluding the value that best represents the DM’s preferences), while also
constructing a dataset from the DM’s answers to further identify this optimal parameter
value. Since the theoretical guarantees of the algorithm require the use of the 0-1 loss
whose minimization is intractable, it is implemented using a discrete set of admissible
parameter values. This opens the door to models that have not yet been considered
in this thesis, particularly aggregation functions that are nonlinear in their parameters.
Numerical experiments show that the proposed approach provides a significant gain in
robustness to noisy answers in the identification of the DMs optimal alternative, both
for aggregation functions that are linear in their parameters (such as CI) and nonlinear
ones, such as the Chebyshev norm.

GAI-decomposable utility functions In Chapter 4, we go beyond the framework
of totally decomposable models and consider GAI-decomposable utility functions. The
expressiveness this utility model —any utility function admits a GAI-decomposition—
makes it powerful, but also challenging as the absence of a unique GAI decomposition
renders the learning process ill-posed. Therefore, we first proposed to consider standard
functional decompositions such as the classical or the anchored ANOVA decompositions to
remove any ambiguity in the decomposition’s identification problem. Then, the learning
of the selected decomposition is performed by using kernel methods. In particular, we use
a mutiple kernel learning formulation, that allows learning a sparse decomposition (using
as few factors as possible), by solving a quadratically constrained convex optimization
problem. This allows learning simultaneously the decomposition and the utility functions
defined over the factors, without any assumption on the degree of interactions and for
both continuous and discrete attributes, something that was not achieved in the literature
on GAI-decomposable utility functions for now.
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Future Research Directions

The following section discusses potential extensions of the work presented in this
thesis.

Exploring other preference models

• An interesting avenue of research concerns the learning of the Sugeno integral (SI)
[Sugeno, 1977], which is often regarded as the ordinal counterpart of the Choquet
integral (CI) and is also based on a capacity. Indeed, solving an empirical risk
minimization problem formulated with SI poses a significant challenge from an
optimization perspective, since, unlike CI or the multilinear utility (MU), it is not
linear in the capacity that is involved in min and max operations. More specifically,
such optimization problems may be non-convex, and identifying a global minimum
requires the development of appropriate optimization methods [Gagolewski et al.,
2019b]. Existing approaches are scarce [Prade et al., 2009, Beliakov and Divakov,
2020, Abbaszadeh and Hüllermeier, 2020, Baaj, 2024] and often rely on k-maxitivity
[Grabisch, 1997a], the qualitative counterpart of k-additivity, to control the flex-
ibility of the capacity prior to learning. It would therefore be highly relevant to
develop methods that adapt the flexibility of the capacity to the data and yield
compact representations that do not rely on such restrictions.

• The methods proposed in this thesis could be directly applied to the learning of
compare-and-aggregate preference models, which have the advantage of being able
to describe non-transitive preferences. For instance, we could consider the model
x ≿ x′ ⇔ Cw(x − x′) ≥ 0 for any x, x′ ∈ X , where Cw denotes the CI associated
with capacity w. Alternatively, we could consider capacity-based concordance rules
[Dubois et al., 2003], i.e., x ≿ x′ ⇔ w(c(x, x′)) ≥ w(c(x′, x)) where c(x, x′) denotes
the subset of criteria w.r.t. which x is at least as good as x′ for any x, x′ ∈ X .

• In the case of regression tasks involving attributes that are not necessarily ordered,
or ordered attributes on which the restricted preference ≿i is not monotonic with
respect to the natural order defined on the attribute, requiring the consistency
of the learned model with Pareto dominance is no longer relevant, and we can
therefore free ourselves from monotonicity constraints on the capacity. Clearly,
dropping monotonicity constraints should provide a significant computational gain,
but the associated descriptive gain is unclear. It would be interesting to study to
what extent regressions without monotonicity constraints via an integral using a
non-monotonic capacity improve the descriptive power of monotonic models.
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Limits of ℓ1 regularization in terms of variable selection In this thesis, we have
demonstrated the practical advantage of using the ℓ1 regularization to learn sparse rep-
resentations of the capacity in models such as CI or MU. That said, we also observed
how the statistical limitations of this regularization can negatively impact the quality
of the learned representations, especially when it comes to variable selection. More pre-
cisely, as discussed in Chapter 2, when learning a sparse Möbius transform, correlations
between the components ΦS = mini∈S{xi}, S ⊆ N can undermine the ability of an ℓ1-
regularized regression to accurately recover the true set of non-zero Möbius masses from
a hidden model. Although numerical tests suggest that adaptive ℓ1 regularization can
compensate for this weakness in practice, it does require computing the weights involved
in the regularization in advance and tuning an additional hyperparameter. An interesting
research direction would be to compare the latter regularization with ℓ0 regularization,
which penalizes the number of non-zero coefficients. Unlike ℓ1-based regularizations, the
ℓ0 regularization does not introduce bias by penalizing coefficients with large magni-
tude more severely (and thus shrinking coefficients toward zero) [Bertsimas et al., 2016].
While minimizing the ℓ0-norm was long considered intractable, recent advances in mixed
integer programming have opened up the possibility of applying such methods to high-
dimensional problems [Bertsimas and Parys, 2020, Guyard et al., 2024], suggesting that
capacity learning with this type of approach could be possible.

Beyond sparsity: toward general compact representations of capacities The
search for sparse Möbius transforms for compactly encoding the exponential number of
coefficients defining a capacity was motivated in Chapter 2. Yet, one may consider using a
generalized notion of compactness by seeking Möbius transforms with a limited number
of distinct coefficient values (not necessarily zero). For example, symmetric capacities
(which yield OWA operators within the Choquet integral) are described in their Möbius
transform with only n distinct values (corresponding to subset sizes), despite the fact
that they are not sparse if these values are non-zero. A way to induce this type of
structure could be to use a fused LASSO regularization [Tibshirani et al., 2005, Sokolovska
et al., 2017] of the form λ

∑p−1
j=1 |βj+1 − βj|, which encourages equality between adjacent

coefficients (potentially lexicographically ordered here).

Exploiting label complexity to bound the number of queries in incremental
preference elicitation In Chapter 5, we adopted a disagreement-based active learning
strategy for the incremental elicitation of preferences in the context of a multi-criteria
choice problem. Nevertheless, we did not take advantage of label complexity results, which
are fundamental in the active learning theory [Hanneke et al., 2014]. Such results provide
upper bounds on the number of labeled examples needed so that, with high probability,
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the learned model’s true risk is within an ϵ margin of the optimal model. Leveraging
such bounds to derive guarantees on the number of queries needed to identify the DM’s
optimal alternative with a given precision would be an interesting direction, especially
since no such result currently exists for incremental elicitation methods based on mini-
max regret strategy (even though, in practice, the number of queries remains relatively
low [Benabbou et al., 2017b, Bourdache et al., 2019b]). It is important to note that sam-
ple complexity results, for instance those associated with disagreement-based algorithms
[Hanneke et al., 2014], depend on the expressiveness of the model class, often character-
ized by its VC-dimension [Vapnik, 1995]. This would thus require a thorough analysis,
and possibly an extension of existing results on the VC-dimension of the utility function
models in decision theory [Hüllermeier and Fallah Tehrani, 2012, Basu and Echenique,
2020].

Preference learning for several DM In contexts involving multiple DM (e.g., music
applications, movie streaming platforms), a naive adaptation of the learning algorithms
proposed in this thesis would consist in running the algorithms separately for each DM
(or user), using their own dataset of preference examples. However, the amount of data
available for each user is likely to be small, which may result in poor performance of the
learned models. Yet, users could benefit from leveraging other users’ data, as common
patterns may exist beyond individual preferences (e.g., popular songs are liked by every-
body). One approach to address this issue while preserving the privacy of each user’s data
is to use federated learning [McMahan et al., 2017, Kairouz et al., 2021], which enables
collaborative model training without data sharing. This can be achieved by performing
local model updates on each user’s device using their personal data, and sending only the
model parameters to a central server. The server then aggregates the parameters from
all users and sends back a global model to each user. Since such an approach is designed
to learn a single global model, it may not be well-suited to capturing individual user
behaviors. A more appropriate setting could be that of personalized federated learning.
For example, one possible approach is to use the model-agnostic meta-learning framework
[Fallah et al., 2020], which seeks a shared initialization that captures common patterns
across users, such that each user’s can quickly adapt the model to their local data with
just a few gradient updates.

A different but related research direction could involve evaluating the benefits of
using a general aggregation function, such as the Choquet or Sugeno integral, to combine
model parameters at the server level. Some initial experiments have already been con-
ducted [Pękala et al., 2024], showing improved performance compared to the standard
weighted average, and suggesting that a more refined aggregation taking into account
positive or negative synergies between users might be valuable.
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Interpretability methods for machine learning Capacities, or more generally, games
(i.e., set functions that are not necessarily monotonic), play an important role in inter-
pretability methods in machine learning, particularly in approaches that aim to quantify
the relative importance of features for a trained model f . Among the key methods, one
can cite kernelSHAP [Lundberg and Lee, 2017], which models the importance of groups
of features in the prediction of a value f(x) using a game w(S), defined for instance as
w(S) = E[f(z) | xS]. This modeling approach allows for assigning an importance score
to each feature via the Shapley values of the game. The Shapley values can be computed
by estimating the game for some coalitions, and searching for the additive game that
best approximates the observations in the sense of a (weighted) least squares optimiza-
tion problem. To obtain more refined representations of the role of features, some works
have attempted to generalize this approach by approximating the observed game with
k-additive games [Pelegrina et al., 2023, Fumagalli et al., 2024, Pelegrina et al., 2025].
However, this approach requires fixing the order k of the representation in advance, and
results indicate that this choice is crucial. Therefore, an interesting research direction
would be to adapt the methods proposed in this thesis to overcome this limitation by
seeking a sparse Möbius representation, allowing to detect the few interaction components
describing the game w, whatever the order.
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A.1 Q-queries without the Restricted Solvability
Assumption

In this section we consider the case where restricted solvability w.r.t component
i does not hold, i.e., when exact answers to queries Qij do not necessarily exist. In
particular, we consider the case of discrete attributes (the most common case where
restricted solvability fails to hold). The elements of Xi are denoted xi,k and indexed
according to their relative values: xi,k ≾i xi,k+1, for any k.

(i) Marginal value elicitation below the neutral level

Proposition 7.7. For any attribute j ∈ N , let rj, Rj ∈ Xj and xi ∈ Xi such that
0j ≾j rj ≺j Rj, and xi ≾i 0i. If the two following queries are successively asked:

- what is the lowest k such that (xi, rj,0−ij) ≾ (xi,k+1, Rj,0−ij)? Then we set y+
i =

xi,k+1 and y−
i = xi,k.

- what is the highest k such that (y+
i , rj,0−ij) ≿ (xi,k, Rj,0−ij)? Then we set z−

i = xi,k

and z+
i = xi,k+1.

then, the following inequalities hold:

ui(y+
i )− ui(z−

i ) ≥ ui(xi)− ui(y+
i ) (7.37)

ui(y+
i )− ui(z+

i ) < ui(xi)− ui(y−
i ) (7.38)

Proof. By construction y−
i necessarily verifies the following strict preference: (xi, rj,0−ij) ≻

(y−
i , Rj,0−ij). Hence, with (xi, rj,0−ij) ≾ (y+

i , Rj,0−ij), we obtain the following inequa-
tions: (ui(xi)−ui(y+

i ))(1−w′(N\{i})) ≤ (ui(Rj)−ui(rj))w({j}) and (ui(xi)−ui(y−
i ))(1−

w′(N \ {i})) > (ui(Rj)− ui(rj))w({j}).
Similarly, z+

i verify (y+
i , rj,0−ij) ≺ (z+

i , Rj,0−ij). Hence, with (y+
i , rj,0−ij) ≿

(z−
i , Rj,0−ij) we obtain the following inequations: (ui(y+

i ) − ui(z−
i )(1 − w′(N \ {i})) ≥

(ui(Rj)−ui(rj))w({j}) and (ui(y+
i )−ui(z+

i ))(1−w′(N \{i})) < (ui(Rj)−ui(rj))w({j}).
Hence we have (ui(xi)− ui(y+

i ))(1−w′(N \ {i})) ≤ (ui(Rj)− ui(rj))w({j}) ≤ (ui(y+
i )−

ui(z−
i ))(1− w′(N \ {j})).
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Moreover, (ui(y+
i ) − ui(z+

i )(1 − w′(N \ {i})) < (ui(R) − ui(r))w({j}) < (ui(xi) −
ui(y−

i )(1− w′(N \ {i})). Assuming (−1i,0−i) ≺ 0, i.e., w′(N \ {i}) < 1, we obtain:

ui(y+
i )− ui(z−

i ) ≥ ui(xi)− ui(y+
i )

ui(y+
i )− ui(z+

i ) < ui(xi)− ui(y−
i )

Then we overcome the solvability issue by deriving two inequality constraints on the
utility function ui, instead of a unique equality constraint.

(ii) Marginal value elicitation above the neutral level

Proposition 7.8. For any attribute j ∈ N , let rj, Rj ∈ Xj and xi ∈ Xi such that
rj ≺j Rj ≾j 0j and xi ≿i 0i. If the two following queries are successively asked:

- what is the highest k such that (xi, Rj,0−ij) ≿ (xi,k, rj,0−ij)? Then we set y−
i = xi,k

and y+
i = xi,k+1.

- what is the lowest k such that (y−
i , Rj,0−ij) ≾ (xi,k+1, rj,0−ij)? Then we set z−

i =
xi,k and z+

i = xi,k+1.

then, the following inequalities hold:

ui(y−
i )− ui(z+

i ) ≤ ui(xi)− ui(y−
i ) (7.39)

ui(y−
i )− ui(z−

i ) > ui(xi)− ui(y+
i ) (7.40)

Proof. By construction y+
i necessarily verifies the following strict preference: (xi, Rj,0−ij) ≺

(y+
i , rj,0−ij). Hence, with (xi, Rj,0−ij) ≿ (y−

i , rj,0−ij), we obtain the following in-
equations: (ui(xi) − ui(y−

i ))w({i}) ≥ (ui(rj) − ui(Rj))(1 − w′(N \ {j})) and (ui(xi) −
ui(y+

i ))w({i}) < (ui(rj)− ui(Rj))(1− w′(N \ {j})).
Similarly z−

i verify (y−
i , Rj,0−ij) ≻ (z−

i , rj,0−ij). Hence, with (y−
i , Rj,0−ij) ≾

(z+
i , rj,0−ij), we obtain the following inequations: (ui(y−

i ) − ui(z+
i ))w({i}) ≤ (ui(rj) −

ui(Rj))(1−w′(N \{j})) and (ui(y−
i )−ui(z−

i ))w({i}) > (ui(rj)−ui(Rj))(1−w′(N \{j})).
Hence we have (ui(y−

i )− ui(z+
i ))w({i}) ≤ (ui(Rj)− ui(rj))(1−w′(N \ {j})) ≤ (ui(xi)−

ui(y−
i ))w({i}). Moreover, (ui(xi)− ui(y+

i ))w({i}) < (ui(Rj)− ui(rj))(1−w′(N \ {j})) <
(ui(hi)− ui(z−

i ))w({i}). Assuming (1i,0−i) ≻ 0, i.e., w({i}) > 0, we obtain:

ui(y−
i )− ui(z+

i ) ≤ ui(xi)− ui(y−
i )

ui(y−
i )− ui(z−

i ) > ui(xi)− ui(y+
i )
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A.2 Covariance Computations

Proposition 7.9. Let ρ1
1,3, ρ

1
1,2, ρ

2
2,3 ∈ [−1, 1] such that 1− 3(ρ1

1,3)2 ̸= 0, and let Σ11 and
Σ21 be the following matrices:

Σ11 =



1 0 0 ρ1
1,3

0 1 0 ρ1
1,3

0 0 1 ρ1
1,3

ρ1
1,3 ρ1

1,3 ρ1
1,3 1


, Σ21 =


ρ1

1,2 ρ1
1,2 0 ρ2

2,3

ρ1
1,2 0 ρ1

1,2 ρ2
2,3

0 ρ1
1,2 ρ1

1,2 ρ2
2,3



If sign(β∗
A1) = (1, 1, 1, 1)⊺, then the following inequality:

|Σ21(Σ11)−1 sign(β∗
A1)| < 1

where the inequality holds component-wise, is equivalent to:

|2ρ1
1,2(1− ρ1

1,3) + ρ2
2,3(1− 3ρ1

1,3)| < |1− 3(ρ1
1,3)2|

Proof. Σ11 can be rewritten as a block-matrix as follows:

Σ11 =

M1 MT
2

M2 M3

 with M1 =


1 0 0

0 1 0

0 0 1

 ,M2 =
(
ρ1

1,3 ρ1
1,3 ρ1

1,3

)
,M3 =

(
1
)

The Schur complement of Σ11 is S = M3 −MT
2 M

−1
1 M2 = 1− 3(ρ1

1,3)2 ̸= 0 and therefore
Σ11 is a positive definite matrix the inverse of which reads as follows:

(Σ11)−1 =

M−1
1 +M−1

1 MT
2 S

−1M2M
−1
1 −M−1

1 MT
2 S

−1

−S−1M2M
−1
1 S−1



= 1
1− 3(ρ1

1,3)2



1− 2(ρ1
1,3)2 (ρ1

1,3)2 (ρ1
1,3)2 −ρ1

1,3

(ρ1
1,3)2 1− 2(ρ1

1,3)2 (ρ1
1,3)2 −ρ1

1,3

(ρ1
1,3)2 (ρ1

1,3)2 1− 2(ρ1
1,3)2 −ρ1

1,3

−ρ1
1,3 −ρ1

1,3 −ρ1
1,3 1


Then we finally obtain:
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Σ21(Σ11)−1 sign(β∗
A1) =

2ρ1
1,2(1− ρ1

1,3) + ρ2
2,3(1− 3ρ1

1,3)
1− 3(ρ1

1,3)2


1

1

1


Therefore, all components of the vector Σ21(Σ11)−1 sign(β∗

A1) have absolute values strictly
lower than 1 if and only if |2ρ1

1,2(1− ρ1
1,3) + ρ2

2,3(1− 3ρ1
1,3)| < |1− 3(ρ1

1,3)2|.

In the following, we use the convention that for any subset S ⊆ N ,
∫

IS
f(z1, . . . , zn) dzS

denotes the multiple integral of the function f w.r.t. the arguments zi, i ∈ S on the hy-
percube IS = [0, 1]s. Moreover, for any subset S ⊆ N , its cardinal |S| is denoted by s.
Finally, we use the fact that if (Z1, . . . , Zn) are n independent random variables, each
following a uniform distribution over [0, 1]n, then for any subset S ⊆ N , the random vari-
able ΦS = mini∈S Zi follows a Beta distribution with parameters (1, s). Consequently, for
any k ∈ N, we have (see, for instance, [Arnold et al., 2008, Chapter 2]):

E[Φk
S] =

∫
IS

min
i∈S
{zi}k dzS = k!s!

(k + s)! (7.41)

Lemma 1. Let n ≤ 3 and B1, B2 ⊆ N such that B1 ∩ B2 = ∅ and B2 ̸= ∅. For any
vector (zj)j∈B2 taking values in [0, 1], the following equality holds:

∫
IB1

min
i∈B2∪B1

{zi} dzB1 = ∧B2 −
b1∧2

B2

2 +
b1(b1 − 1)+∧3

B2

6 (7.42)

with b1 = |B1|, ∧B2 = mini∈B2{zi} and x+ = max{0, x} for any x ∈ R.

Proof. Firstly, for any u ∈ [0, 1] and any k ∈ N, we have:
∫ 1

0
min{x, u}k dx =

∫ u

0
min{x, u}k dx+

∫ 1

u
min{x, u}k dx

=
∫ u

0
xk dx+

∫ 1

u
uk dx (7.43)

= uk+1

k + 1 + (1− u)uk = uk − k

k + 1u
k+1 (7.44)

Remark that for B1 = ∅, the left-hand term of Equation 7.42 boils down to ∧B2 which is
equal to the right-hand term for b1 = 0. Suppose now that B1 ̸= ∅. Since n ≤ 3, B2 ̸= ∅
and B1 ∩ B2 = ∅, B1 is necessarily a singleton or a pair, then we have: b1 ∈ {1, 2}.
Then let (π1, . . . , πb1) be any ordering of the elements of B1. Using Equation 7.44 with
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u = mini∈(B1∪B2)\{π1}{zi}, x = zπ1 and k = 1, we have:

∫
IB1

min
i∈B2∪B1

{zi} dzB1 =
∫

IB1\{π1}

( ∫ 1

0
min{zπ1 , min

i∈B2∪B1\{π1}
{zi}} dzπ1

)
dzB1\{π1}

=
∫

IB1\{π1}

(
∧(B1∪B2)\{π1} −

∧2
(B1∪B2)\{π1}

2

)
dzB1\{π1} (7.45)

Then if b1 = 1, we have B1 \ {π1} = ∅ and (B1 ∪ B2) \ {π1} = B2. Therefore, Equation
7.45 directly yields Equation 7.42. Finally, if b1 = 2, we have B1 \ {π1} = {π2} and
(B1 ∪ B2) \ {π1} = B2 ∪ {π2}. Then, using Equation 7.44 for u = mini∈B2{zi}, x = zπ2

and k ∈ {1, 2}, we obtain:

∫
IB1

min
i∈B2∪B1

{zi} dzB1 =
∫ 1

0

(
min

i∈B2∪{π2}
{zi} −

mini∈B2∪{π2}{zi}2

2

)
dzπ2

= ∧B2 −
b1∧2

B2

2 +
b1(b1 − 1)+∧3

B2

6

Proposition 7.10. Let (Z1, . . . , Zn) be independent random variables distributed accord-
ing to a uniform distribution over [0, 1]n with n ≤ 3. Then, for any S1, S2 ⊆ N such that
|S1| = s1, |S2| = s2 and |S1 ∩ S2| = s12, the covariance between ΦS1 = mini∈S1{Zi} and
ΦS2 = mini∈S1{Zi} is given by:

Cov(ΦS1 ,ΦS2) =

0 if s12 = 0,∑3
k=1 gk(s12)γk(s1, s2, s12)− 1

(s1+1)(s2+1) otherwise,
(7.46)

with gk(s12) = k!s12!
(s12+k)! , γ1 = 1, γ2(s1, s2, s12) = −1

2((s1 − s12)+ + (s2 − s12)+) and
γ3(s1, s2, s12) = 1

4((s1− s12)+(s2− s12)+) + 1
6((s1− s12)+(s1− s12− 1)+ + (s2− s12)+(s2−

s12 − 1)+).

Proof. Let S1, S2 ⊆ N \ ∅. If S1 ∩ S2 = ∅, since random variables (Z1, . . . , Zn) are
independent, so are ΦS1 and ΦS2, yielding Cov(ΦS1 ,ΦS2) = 0. If S1 ∩ S2 ̸= ∅, we have:

E[ΦS1ΦS2 ] =
∫

IS1∪S2

min
i∈S1
{zi}min

i∈S2
{zi} dzS1∪S2 =

∫
IS2

min
i∈S2
{zi}

( ∫
IS1\S1∩S2

min
i∈S1
{zi} dzS1\(S1∩S2)

)
dzS2

Then, using Lemma 1 sequentially for B1 = S1 \ (S1 ∩ S2), B2 = S1 ∩ S2 and B1 =
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S2 \ (S1 ∩ S2), B2 = S1 ∩ S2, we obtain:

E[ΦS1ΦS2 ] =
∫

IS1∩S2

( ∫
IS2\(S1∩S2)

min
i∈S2
{zi}

(
∧S1∩S2 −

(s1 − s12)+∧2
S1∩S2

2

+
(s1 − s12)+(s1 − s12 − 1)+∧3

S1∩S2

6

)
dzS2\(S1∩S2)

)
dzS1∩S2

=
∫

IS1∩S2

(
∧S1∩S2 −

(s1 − s12)+∧2
S1∩S2

2 +
(s1 − s12)+(s1 − s12 − 1)+∧3

S1∩S2

6

)
(
∧S1∩S2 −

(s2 − s12)+∧2
S1∩S2

2 +
(s2 − s12)+(s2 − s12 − 1)+∧3

S1∩S2

6

)
dzS1∩S2

where ∧S1∩S2 = mini∈S1∩S2{zi} for any vector (zi)i∈S1∩S2 valued in [0, 1]. This
expression can be simplified remarking that since n ≤ 3 and S1∩S2 ̸= ∅, we have that the
cross products (s2 − s12)+(s2 − s12 − 1)+(s1 − s12)+(s1 − s12 − 1)+, (s2 − s12)+(s2 − s12 −
1)+(s1 − s12)+ and (s1 − s12)+(s1 − s12 − 1)+(s2 − s12)+ necessarily equal zero. Finally,
using Equation 7.41 for S = S1 ∩ S2 and k ∈ {2, 3, 4}, we obtain that:

E[ΦS1ΦS2 ] = g2(s12)− g3(s12)
1
2((s1 − s12)+ + (s2 − s12)+) + g4(s12)(

1
4((s1 − s12)+(s2 − s12)+)

+ 1
6((s1 − s12)+(s1 − s12 − 1)+ + (s2 − s12)+(s2 − s12 − 1)+)) (7.47)

with gk(s12) = k!s12!
(s12+k)! . Finally, Equation 7.41 yields E[ΦS1 ]E[ΦS2 ] = 1

(s1+1)(s2+1) , an we
obtain Equation 7.46.
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Table 8.4 lists the names of the variables, whether they have been multiplied by 1

or -1 (monotonicity denoted by mono.), and their type (categorical or continuous denoted
by cat. and cont.). For more information on the construction of variables, see [Jeandidier
et al., 2020, Bourreau-Dubois et al., 2022, Jeandidier, 2024] (in French).

Variable Mono. Type
offered amount (euros) 1 cont.
requested amount (euros) 1 cont.
age wife (years) 1 cont.
age husband (years) 1 cont.
health status of the husband -1 cont.
number of dependent children 1 cat.
monthly standard of living gap between spouses (euros) 1 cont.
indication of a disagreement over child custody 1 cat.
disparity in separate assets between spouses 1 cont.
the wife took care of the children and the household 1 cat.
divorce for husbands fault 1 cat.
length of marriage (years) 1 cont.
the wife is claiming compensation for damages 1 cat.
common assets of the couple (euros) 1 cont.
CA in the form of an annuity 1 cat.
matrimonial regime unfavorable to the wife 1 cat.
male judge 1 cat.
medium cities 1 cat.
separate property of the husband (euros) 1 cont.
disagreement over the alimony for child support 1 cat.
the judge temporarily grants the marital home to the wife 1 cat.
the judge order the husband to pay damages 1 cat.
the wife contributed to the husband’s business activities 1 cat.
small towns 1 cat.
the wife is eligible for aide juridictionnelle à taux plein -1 cat.

Table 8.4: Variables signification with monotonicity and type.
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Lemma 2. The proximal operator of the ℓ1-norm is defined for any x ∈ Rd by:

proxλ∥·∥1(x) = arg min
z∈Rd

(1
2∥z − x∥

2
2 + λ∥z∥1

)

which admits the following closed-form solution:

proxλ∥·∥1(x) = sign(x) ∗ [|x| − λ]+ (9.48)

Proof. For any x ∈ Rd, we have:

proxλ∥·∥1(x) = arg min
z∈Rd

( d∑
j=1

(1
2(zj − xj)2 + λ|zj|

))
(9.49)

Problem 9.49 is separable across coordinates, and thus reduces to solving the following
univariate problem for each coordinate j:

min
zj∈R

(1
2(zj − xj)2 + λ|zj|

)
(9.50)

Therefore, at the optimum zj satisfies the following necessary condition for optimality
(obtained by putting subgradient to zero):

(zj − xj) + λsj = 0⇐⇒ zj = xj − λsj (9.51)

where sj ∈ ∂|.|zj and ∂|.|(zj) is the set of subgradients of the absolute value function at
point zj. ∂|.|(zj) is detailed below:

∂|.|(zj) =


{1} if zj > 0,

{−1} if zj < 0,

[−1, 1] if zj = 0.

(9.52)

Then, we consider the three following cases:

• If xj < −λ < 0, for any s ≥ −1 we have: xj − λs ≤ xj + λ < 0. Then, with
Equation (9.51), necessarily zj = xj − λsj < 0 and we obtain sj = −1. Therefore,
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we have:

zj = xj + λ

= −(|xj| − λ)

where we use xj < 0 in the second line.

• If xj > λ > 0, for any s ≤ 1 we have: xj − λs ≥ xj − λ > 0. Then, with Equation
(9.51), necessarily zj = xj − λsj > 0 and we obtain sj = 1. Therefore, we have:

zj = xj − λ

= |xj| − λ

where we use xj > 0 in the second line.

• If |xj| < λ, suppose zj > 0, then sj = 1 and with Equation (9.51), zj = xj − λ ≤ 0
which is a contradiction. Similarly, suppose zj < 0, then sj = −1 and with Equation
(9.51), zj = xj + λ ≥ 0 which is a contradiction also. Then necessarily zj = 0 and
sj = xj

λ
∈ [−1, 1].

The three cases can be summarized as follows:

zj =


−(|xj| − λ) if xj < −λ < 0

|xj| − λ if xj > λ > 0

0 if |xj| < λ

= sign(xj)[|xj| − λ]+

Lemma 3. The proximal operator of I− is defined for any x ∈ Rd by:

proxI−(x) = arg min
z∈Rd

(1
2∥z − x∥

2
2 + I−(z)

)

which admits the following closed-form solution:

proxI−(x) = −[−x]+ (9.53)

Remark that it corresponds to the Euclidean projection on the negative orthant.
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Proof. For any x ∈ Rd, we have:

proxI−(x) = arg min
z∈Rd

1
2

d∑
j=1

(
(zj − xj)2 + I−(zj)

) (9.54)

Problem 9.54 is separable w.r.t. components zj. Therefore, zj is solution of the following
univariate optimization problem:

zj = arg min
zj≤0

1
2(zj − xj)2

Let uj ∈ R+ denote the Lagrangian multiplier of the sign constraint on zj. Then the
stationary Karush–Kuhn–Tucker (KKT) condition is:

zj − xj + uj = 0 (9.55)

Also, the KKT primal feasibility condition gives zj ≤ 0 and the KKT complementary
slackness condition gives ujzj = 0. Then, we consider the three following cases:

• If xj > 0, since zj ≤ 0, from Equation (9.55) we necessarily have uj > 0. Then
from complementary slackness condition zj = 0.

• If xj < 0, since uj ≥ 0, from Equation (9.55) we necessarily have zj < 0. Then from
complementary slackness condition uj = 0. Then with Equation (9.55), zj = xj.

• If xj = 0, suppose uj > 0, then with Equation (9.55), necessarily zj < 0 and
complementary slackness condition does not hold. Then uj = 0 and then with
Equation (9.55), zj = 0.

The three cases can be summarized as follows:

zj =


0 if xj > 0

xj if xj < 0

0 if xj = 0

= −[−xj]+
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List of publications

International Journal Publications

1. Herin M., Perny P. and Sokolovska N.(2025). “Learning Additive Decompositions of
Multiattribute Utility Functions”. In Theory and Decision. https://doi.org/10.1007
/s11238-025-10068-6.

2. Herin M., Perny P. and Sokolovska N.(2024b). “Learning Preference Representa-
tions based on Choquet Integrals for Multicriteria Decision Making”. In Annals
of Mathematics and Artificial Intelligence. https://doi.org/10.1007/s10472-024-
09930-0.

International Conferences with Proceedings

1. Herin M., Perny P. and Sokolovska N.(2024e).“Noise-Tolerant Active Preference
Learning for Multicriteria Choice Problems”. In Proceedings of the Algorithmic De-
cision Theory: 8th International Conference (ADT-24),New Brunswick, NJ, USA,
October 14–16, 2024, pp 191 - 206. https://doi.org/10.1007/978-3-031-73903-313.

2. Herin M., Perny P. and Sokolovska N.(2024d). “Online Learning of Capacity-Based
Preference Models”. In Proceedings of the 33rd International Joint Conference on
Artificial Intelligence (IJCAI-24), Jeju, South Korea, August 3-9, 2024, pp 7118-
7126. https://doi.org/10.24963/ijcai.2024/787. Distinguished Paper Award.

3. Herin M., Perny P. and Sokolovska N.(2024a). “Learning GAI-Decomposable Util-
ity Models for Multiattribute Decision Making”. In Proceedings of the 38th AAAI
Conference on Artificial Intelligence (AAAI-24), Vancouver, Canada, February 20-
27, 2024, 38(18) 20412-20149. doi.org/10.1609/aaai.v38i18.30024.

4. Herin M., Perny P. and Sokolovska N.(2023). “Learning Preference Models with
Sparse Interactions of Criteria”. In Proceedings of the 32nd International Joint
Conference on Artificial Intelligence (IJCAI-23), Macao, China, August 19-25, 2023,
pp. 3786–3794.https://doi.org/10.24963/ijcai.2023/421.

5. Herin M., Perny P. and Sokolovska N.(2022a). “Learning Sparse Representations of
Preferences within Choquet Expected Utility Theory”. In Proceedings of the 38th
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Conference on Uncertainty in Artificial Intelligence (UAI-22), Eindhoven, Nether-
lands, August 1-5, 2022, PMLR 180, pp. 800-810. https://proceedings.mlr.press/v1-
80/herin22a.html

International Conferences/Workshops:

1. Tarissan F., Herin M., Perny P., Isabelle S. (2025), “Leveraging the Choquet In-
tegral for Analyzing Court Decisions in Divorce Cases”. In The European Society
for Empirical Legal Studies 2025 Conference (ESELS-25), Toulouse, France, June
18-20, 2025.

2. Herin M., Perny P. and Sokolovska N.(2022c). “A Dual Approach for Learning
Sparse Representations of Choquet Integrals”. In DA2PL From Multiple-Criteria
Decision Aid to Preference Learning, November 2022, Compiègne, France.

3. Herin M., Perny P. and Sokolovska N.(2022b). “Learning Utilities and Sparse Rep-
resentations of Capacities for Multicriteria Decision Making with the Bipolar Cho-
quet Integral”. In The 13th Multidisciplinary Workshop on Advances in Preference
Handling (in conjunction with IJCAI-22), July 2022, Vienna, Austria.

National Conferences

1. Herin M., Perny P. and Sokolovska N.(2024c). “A Unified Approach to Learn
Decision Models with Interactions”. In 25ème congrès annuel de la société française
de recherche opérationnelle et d’aide à la décision (ROADEF-24), 4-7 mars, 2024,
Amiens, France. Best Student Paper.

Talks & Invited Presentations

1. UQSay Seminar (Uncertainty Quantification), “Algorithms for learning capacity-
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2. The 14th Multidisciplinary Workshop on Advances in Preference Handling (IJCAI-
23 Workshop), “Learning Compact Preference Representations based on Choquet
Integrals.” (contributed talk), Aug. 23, Macao, China, https://sites.google.com.

3. Seminar Discrete Mathematics, Optimization, Decision-making (CES-University
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Abstract. The work presented in this thesis lies at the intersection of decision theory and machine
learning. The objective is to develop learning methods for preference models grounded in decision
theory, to explain or predict a decision maker’s preferences and ultimately recommend optimal al-
ternatives in decision problems. We focus in particular on value function models that account for
interactions between different viewpoints on the alternatives, such as the Choquet integral, the mul-
tilinear utility, and decomposable GAI utility functions. These models possess strong descriptive
power, while also ensuring a form of rationality in preferences through the satisfaction of desirable
mathematical properties, and allowing for interpretability via their parameters. Due to the combi-
natorial nature of interactions, learning such models poses a computational challenge, as it requires
determining an exponential number of parameters, sometimes subject to combinatorial constraints.
In this thesis, we propose to control the flexibility of these models through the learning of sparse
representations of interactions, notably through the use of sparsity-inducing regularizations, and to
reduce computational complexity by leveraging convex optimization methods from machine learn-
ing suited to high-dimensional sparse learning problems. In summary, this thesis contributes by (i)
providing learning problem formulations tailored to various preference models and learning settings:
from pre-collected examples (passive learning), from carefully selected queries (preference elicitation
or active learning), or from a stream of examples (online learning), (ii) developing computationally ef-
ficient optimization algorithms to solve these problems, and (iii) conducting experimental evaluations
on both synthetic and real-world preference data.
Keywords: decision theory, preference elicitation, multicriteria decision-making, decision-making
under uncertainty, aggregation function, machine learning, preference learning, convex optimization.

Résumé. Les travaux présentés dans cette thèse se situent à l’intersection de la théorie de la dé-
cision et de l’apprentissage automatique. L’objectif est de proposer des méthodes d’apprentissage
pour des modèles de préférences issus de la théorie de la décision, dans le but d’expliquer ou de
prédire les préférences d’un décideur, et, en fin de compte, de recommander des alternatives opti-
males dans des problèmes de décision. Nous nous intéressons en particulier aux modèles de type
fonction de valeur prenant en compte les interactions entre les différents points de vue sur les alter-
natives, tels que l’intégrale de Choquet, l’utilité multilinéaire et les fonctions d’utilité GAI décom-
posables. Ces modèles présentent un fort pouvoir descriptif, tout en assurant une forme de rational-
ité dans les préférences via le respect de propriétés mathématiques souhaitables, et en permettant
l’interprétabilité grâce à leurs paramètres. En raison de la nature combinatoire des interactions,
l’apprentissage de ces modèles représente un défi computationnel, car il nécessite la détermination
d’un nombre exponentiel de paramètres, parfois soumis à des contraintes combinatoires. Dans cette
thèse, nous proposons de contrôler la flexibilité de ces modèles via l’apprentissage de représentations
parcimonieuses des interactions, notamment à l’aide de régularisations favorisant la parcimonie, et
d’alléger la complexité computationnelle en exploitant des méthodes d’optimisation convexes pour
l’apprentissage automatique, adaptées à l’apprentissage parcimonieux en grande dimension. En ré-
sumé, cette thèse fournit (i) des formulation de problèmes d’apprentissage adaptées à différents
modèles de préférences ainsi qu’à divers cadres d’apprentissage : à partir d’exemples préalable-
ment collectés (apprentissage passif), à partir de requêtes soigneusement sélectionnées (élicitation
des préférences ou apprentissage actif), ou à partir de flux d’exemples (apprentissage en ligne), (ii)
des algorithmes d’optimisation computationnellement efficaces pour la résolution de ces problèmes,
et (iii) des évaluations expérimentales sur des données de préférences synthétiques et réelles.
Mots-clés : théorie de la décision, élicitation des préférences, décision multicritère, décision dans
l’incertains, fonction d’agrégation, apprentissage des préférences, optimisation convexe.
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